Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Primes in sequences associated to polynomials (after Lehmer).

Einsiedler, M. and Everest, G. and Ward, T. (2000) 'Primes in sequences associated to polynomials (after Lehmer).', LMS journal of computation and mathematics., 3 . pp. 125-139.

Abstract

In a paper of 1933, D.H. Lehmer continued Pierce's study of integral sequences associated to polynomials, generalizing the Mersenne sequence. He developed divisibility criteria, and suggested that prime apparition in these sequences -- or in closely related sequences -- would be denser if the polynomials were close to cyclotomic, using a natural measure of closeness. We review briefly some of the main developments since Lehmer's paper, and report on further computational work on these sequences. In particular, we use Mossinghoff's collection of polynomials with smallest known measure to assemble evidence for the distribution of primes in these sequences predicted by standard heuristic arguments. The calculations lend weight to standard conjectures about Mersenne primes, and the use of polynomials with small measure permits much larger numbers of primes to be generated than in the Mersenne case.

Item Type:Article
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1112/S1461157000000255
Record Created:18 Oct 2012 15:50
Last Modified:19 Oct 2012 14:44

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library