Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Durham Research Online
You are in:

Beyond distance and direction : the brain represents target locations non-metrically.

Thaler, Lore and Goodale, Melvyn (2010) 'Beyond distance and direction : the brain represents target locations non-metrically.', Journal of vision., 10 (3). p. 3.

Abstract

In their day-to-day activities human beings are constantly generating behavior, such as pointing, grasping or verbal reports, on the basis of visible target locations. The question arises how the brain represents target locations. One possibility is that the brain represents them metrically, i.e. in terms of distance and direction. Another equally plausible possibility is that the brain represents locations non-metrically, using for example ordered geometry or topology. Here we report two experiments that were designed to test if the brain represents locations metrically or non-metrically. We measured accuracy and variability of visually guided reach-to-point movements (Experiment 1) and probe-stimulus adjustments (Experiment 2). The specific procedure of informing subjects about the relevant response on each trial enabled us to dissociate the use of non-metric target location from the use of metric distance and direction in head/eye-centered, hand-centered and externally defined (allocentric) coordinates. The behavioral data show that subjects' responses are least variable when they can direct their response at a visible target location, the only condition that permitted the use of non-metric information about target location in our experiments. Data from Experiments 1 and 2 correspond well quantitatively. Response variability in non-metric conditions cannot be predicted based on response variability in metric conditions. We conclude that the brain uses non-metric geometrical structure to represent locations.

Item Type:Article
Keywords:Spatial representation, Visual perception, Visuomotor transformation, Coordinate transformations, Hand movements, Maximum likelihood estimation.
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1167/10.3.3
Record Created:09 Nov 2012 13:50
Last Modified:13 Oct 2014 15:03

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library