Skip to main content

Research Repository

Advanced Search

Seiberg Duality versus Hidden Local Symmetry

Abel, S; Barnard, J

Authors

J Barnard



Abstract

It is widely believed that the emergent magnetic gauge symmetry of SQCD is analogous to a hidden local symmetry (HLS). We explore this idea in detail, deriving the entire (spontaneously broken) magnetic theory by applying the HLS formalism to spontaneously broken SU(N) SQCD. We deduce the Kähler potential in the HLS description, and show that gauge and flavour symmetry are smoothly restored along certain scaling directions in moduli space. We propose that it is these symmetry restoring directions, associated with the R-symmetry of the theory, that allow full Seiberg duality. Reconsidering the origin of the magnetic gauge bosons as the ρ-mesons of the electric theory, colour-flavour locking allows a simple determination of the parameter a. Its value continuously interpolates between a = 2 on the baryonic branch of moduli space — corresponding to “vector meson dominance” — and a = 1 on the mesonic branch. Both limiting values are consistent with previous results in the literature. The HLS formalism is further applied to SO and Sp groups, where the usual Seiberg duals are recovered, as well as adjoint SQCD. Finally we discuss some possible future applications, including (naturally) the unitarisation of composite W scattering, blended Higgs/technicolour models, real world QCD and non-supersymmetric dualities.

Citation

Abel, S., & Barnard, J. (2012). Seiberg Duality versus Hidden Local Symmetry. Journal of High Energy Physics, 2012(5), Article 44. https://doi.org/10.1007/jhep05%282012%29044

Journal Article Type Article
Publication Date May 11, 2012
Deposit Date Apr 4, 2013
Publicly Available Date Jul 25, 2013
Journal Journal of High Energy Physics
Print ISSN 1126-6708
Publisher Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Peer Reviewed Peer Reviewed
Volume 2012
Issue 5
Article Number 44
DOI https://doi.org/10.1007/jhep05%282012%29044
Keywords Supersymmetry and duality, Supersymmetric gauge theory, Duality in gauge field theories.

Files





You might also like



Downloadable Citations