Durham Research Online

Deposited in DRO:
16 October 2013

Version of attached file:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:
http://dx.doi.org/10.1038/ngeo1154

Publisher’s copyright statement:

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Mass wasting triggered by the 2008 Wenchuan earthquake exceeds orogenic growth

Robert N. Parker¹, Alexander L. Densmore*¹, Nicholas J. Rosser¹, Marcello de Michele², Li Yong³, Huang Runqiu³, Siobhan Whadcoat¹, and David N. Petley¹

¹ Institute of Hazard, Risk and Resilience and Department of Geography, Durham University, Durham DH1 3LE, UK
² Bureau de Recherches Géologiques et Minières, Natural Risks Division, Orléans, France
³ State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan Province, P.R. China

* Corresponding author; email a.l.densmore@dur.ac.uk

Shallow earthquakes are a primary cause of rock uplift in mountain ranges¹, yet large earthquakes also trigger widespread coseismic landsliding that causes significant but spatially heterogeneous erosion²-⁴. The interplay between rock uplift and the distribution and magnitudes of coseismic landslides thus raises a fundamental question: do large earthquakes – and the landslides they trigger – create or destroy mountainous topography? Here we examine the potential changes in orogen volume resulting from the catastrophic Mw 7.9 2008 Wenchuan earthquake in Sichuan, China. The earthquake triggered more than 56,000 landslides⁵, with a spatial distribution that was only partly related to the pattern of tectonic deformation⁶. Using area-volume scaling relationships⁴⁷ we estimate that coseismic landsliding produced ~5-15 km³ of erodible material, greater than the net volume of 2.6±1.2 km³ added to the orogen by coseismic rock uplift⁸. This discrepancy indicates that, even if only a fraction of landslide debris is removed from the orogen over the likely ~2000-4000 year earthquake return period⁶, the Wenchuan earthquake will lead to a net material deficit in the Longmen Shan. This result challenges the widely-held notion that large dip-slip or oblique-slip earthquakes build mountainous topography, and invites more careful consideration of the relationships between coseismic slip, mass wasting, and relief generation.
It is axiomatic that earthquakes build topography through repeated vertical displacements, yet large earthquakes are also a primary trigger of landslides, which play a dominant role in the competition between tectonic and surface processes that drives mountain belt evolution. Recent work has shown that landslides are capable of generating sustained high rates of erosion (of order 1-10 mm yr⁻¹), which poses a challenge to our understanding of how mountainous topography is generated: if the volume of erodible sediment produced by earthquake-triggered landsliding exceeds the coseismically-generated rock volume added to the orogen, then—assuming that this sediment is evacuated from the orogen by other erosional processes—the volume and mean elevation of the orogen must decrease. The relative roles of large earthquakes in generating coseismic rock uplift and facilitating landslide erosion are thus critical for understanding the balance between crustal advection and denudation.

The Mw 7.9 Wenchuan earthquake of 12 May 2008 in Sichuan Province, China, is ideal for examining the relationships between landsliding and orogen evolution because of its large magnitude, the steep regional topography, and the widespread occurrence of coseismic landsliding. The earthquake occurred in the Longmen Shan mountain range, which is underlain by a complex lithological assemblage comprising Proterozoic granitic massifs, a Paleozoic passive margin sequence, a thick Triassic-Eocene(?) foreland basin succession, and minor exposures of poorly-consolidated Cenozoic sediment. The faults in the Longmen Shan originated in the Late Triassic and have remained active into the Quaternary as dextral-thrust oblique-slip faults. The earthquake involved > 10 m of oblique dextral-thrust surface slip on the Beichuan and Pengguan faults (Fig. 1), and inversion of GPS and InSAR data coupled with field observations show that the magnitude and proportion of dextral strike-slip and thrust dip-slip fault displacement varied significantly along the rupture trace, with two distinct zones of concentrated slip and moment release near Yingxiu and Beichuan (Fig. 1).

To constrain landslide erosion, coseismic and immediate postseismic landslides were mapped within an area of 13,800 km² in the Longmen Shan using high-resolution satellite imagery collected within 30 days of the earthquake (see Methods). We resampled the raw landslide inventory data into landslide density P:

...
$P_{ls} = A_{ls}/A_t$ \hspace{1cm} (1)

where A_{ls} is the area of all landslides within a chosen window size A_t (ref. 19). P_{ls} values vary from > 60% (with $A_t = 1 \text{ km}^2$) near the epicenter to 0% in the low-relief Sichuan Basin (Fig. 1). P_{ls} also varies significantly along strike, with high values along the Min Jiang valley near Yingxiu (Fig. 1) and secondary clusters to the northeast, particularly associated with major transverse river valleys. This partly, but not fully, reflects along-strike variations in surface rupture\(^{18}\). Strong variations in P_{ls} between different lithologies were noted by Dai et al.\(^5\), along with complex relationships between P_{ls} and distance from the earthquake source. Given that landslide occurrence is not solely tied to coseismic deformation, there is potential for mismatch between patterns and volumes of tectonic rock uplift and landslide erosion.

Understanding the balance between tectonic and mass wasting processes in the Wenchuan earthquake requires a scaling relationship to convert individual landslide area A_i to total volume V_{ls}:

$$V_{ls} = \sum_{i=1}^{n} \alpha A_i^\gamma$$ \hspace{1cm} (2)

where n is the number of landslides and the scaling parameters α and γ are constants that vary with setting and hillslope process (e.g. bedrock or shallow landslides). We applied equation (2) using published scaling parameters\(^4,7\) as well as those derived from field measurement of 41 landslides in the study area.

The results (Table 1) are strikingly consistent and place first-order constraints on the likely volume of material involved. Application of a global best-fit relationship for all landslide types from Larsen et al.\(^4\) with $\gamma = 1.332\pm0.005$ yields $V_{ls} = 5.73 +0.41/-0.38 \text{ km}^3$. A global best-fit relationship for bedrock landslides from Larsen et al.\(^4\) ($\gamma = 1.35\pm0.01$) and a relationship derived from field measurements ($\gamma = 1.388\pm0.087$) both yield similar values of $V_{ls} = 9 \text{ km}^3$, while a global relationship from Guzzetti et al.\(^7\) yields $V_{ls} = 15.2 +2.0/-1.8 \text{ km}^3$. The predicted volumes in Table 1 are minima, because the images span most but not all of the surface rupture (see Methods), but are consistent with spatially-averaged denudation of 0.42-1.1 m over the
13,800 km² mapped area. Conversion of these estimates to landslide erosion rates requires knowledge of
the recurrence intervals of large landslide-triggering earthquakes on the Beichuan fault, but these are
poorly constrained by limited dating at a few widely-spaced trench sites or inferred rates of strain
accumulation. Assuming plausible recurrence intervals of 2000-4000 yr (refs. 6,20) yields a long-term,
spatially-averaged erosion rate due to landsliding alone of 0.1-0.6 mm yr⁻¹, similar to the pre-earthquake
total erosion rates of 0.2-0.6 mm yr⁻¹ in the eastern Longmen Shan estimated from cosmogenic nuclide
analyses over similar millenial time scales.

These landslide volume estimates can be compared with the volume of material added to the orogen in the
earthquake via coseismic rock uplift. de Michele et al. inverted ascending and descending mode Synthetic
Aperture Radar (SAR) data (see Methods) to obtain the three-dimensional surface displacement vectors at
~350 m intervals across the region. We sum the vertical component of these data (Fig. 1) over the area of
our landslide mapping to obtain a net positive volume gain \(V_t = 2.6±1.2 \text{ km}^3 \). This is more than one standard
error less than all estimates of landslide volume (Table 1), and implies that the earthquake added much less
volume to the Longmen Shan than was potentially released by landsliding (Fig. 2). There are, however, two
important caveats to this direct comparison. First, the SAR data were obtained between November 2006
and August 2008 and thus record surface change due to coseismic and postseismic landslides as well as
coseismic and postseismic deformation. Landsliding affects only about 4% of the 13,800 km² mapped area,
however, minimizing the effect of landsliding on \(V_t \). Also, disruption of the ground surface by landsliding
causes local incoherence in the SAR analysis, and incoherent pixels are not used in the calculation of
surface displacements. The displacement magnitudes and directions determined from the inversion closely
match field observations, suggesting that at the orogen scale the displacement estimates are not
strongly biased by landslide-induced surface change. Second and more significantly, estimated landslide
volume does not necessarily equate to eroded volume; conversion to an orogen-scale erosion rate requires
that the landslide debris be efficiently flushed from the orogen. While there was some sediment storage
along major Longmen Shan river valleys before the earthquake, the overall preponderance of bare-bedrock
hillslopes and general lack of thick (>100 m) sediment stores suggest that coseismic landslide debris is
likely to be efficiently removed over the entire earthquake cycle, but the lack of pre- and post-earthquake sediment discharge data prevents us from quantifying the rate of removal13,24.

Thus, if hillslope and fluvial processes can remove the Wenchuan landslide debris before the next large landslide-triggering earthquake, then the earthquake will likely have caused a significant net volume loss from the orogen. How does this imbalance affect the growth of topography in the Longmen Shan? We stress that our results are an instantaneous measure of the competition between erosional and tectonic processes and bear only indirectly on the long-term volumetric balance that defines an orogen11. It is possible that the range is in topographic decay, as suggested by Godard et al.25, with rates of erosion outpacing those of rock uplift, although this model remains to be tested through more focused thermochronological investigation. A second possibility is that some of the long-term rock uplift is accumulated through interseismic deformation26 or afterslip27-28, although the latter mechanism in particular has tended to yield a small fraction of the coseismic displacement. Alternatively, an important fraction of long-term rock uplift may occur in more frequent smaller, or deeper, earthquakes that generate lower PGA values29 and trigger a much lower volume of landslides2-3. In that scenario, large or shallow earthquakes would serve primarily to reduce the tectonic topography constructed by smaller or deeper earthquakes and maintain hillslopes at threshold gradients. In support of this idea, Ouimet30 noted that short-term (103 yr) erosion rates in the Longmen Shan are 0.2-0.3 mm yr-1, lower than rates over Myr time scales (0.5-0.7 mm yr-1; ref. 25), and suggested that large earthquakes allow erosion rates to catch up with longer-term rock uplift rates. Climatic conditions will also likely play a role in determining the precise pattern and volume of landslides in response to a given earthquake; given the order-of-magnitude agreement between our estimated rates of landslide erosion and both long- and short-term regional erosion rates, however, temporal variations in climate are unlikely to exert significant changes on the volume balance. A further possibility is that the balance between rock uplift and landslide erosion in the Wenchuan earthquake was anomalous and cannot be extrapolated over multiple earthquake cycles. It seems likely that earthquakes with a larger component of shortening will lead to a net addition of rock volume, whereas dominantly strike-slip events will cause a net loss due to widespread landsiding but
limited rock uplift. Dextral and thrust slip in the Wenchuan earthquake were highly partitioned between
different fault strands18, and the ratio of rock uplift to lateral slip on those strands may vary between
earthsquakes17. Large differences in that ratio in successive earthquakes would thus be expected to yield
major temporal variations in the net volume balance, even if the pattern and total volume of landsliding
remained the same. In any case, the apparent and provocative mismatch between tectonic and erosional
volumes involved in the Wenchuan earthquake points to a need for much greater understanding of the role
of large earthquakes in setting regional erosion rates and long-term patterns of orogen evolution.

Methods

Landslide mapping. We developed a semi-automated detection algorithm using EO-1 and SPOT 5 imagery
for objective mapping of individual landslides (see Supplementary Information). Landslide areas were
extracted from EO-1 imagery using an intensity threshold and a 20° gradient mask to remove false positives
in valley floors; independent work5 shows that areas with a gradient of <20° have very low landslide
densities. Unsupervised classification with a 20° gradient mask was used to delineate landslide areas in
SPOT 5 imagery. A series of feature-oriented filters were applied to remove false positives produced by
roads and fields, and the map was visually inspected and corrected. This resulted in a landslide map with a
total area of 13,800 km2 (Fig. 1) and that covers 150 km of the 225 km surface rupture6,18, so that the total
landslide area and volume calculated here are minimum values. Comparisons with field evidence18, fault
models6, and SAR analysis8, and with independent landslide maps compiled by hand from imagery and
aerial photographs5, however, suggest that the mapped area covers the majority of co-seismic slip and
represents a significant sample of the main impact zone of the earthquake.

Coseismic volume estimation. By combining C and L band space-borne Synthetic Aperture Radar (SAR)
amplitude data, de Michele et al.8 derived the three-component coseismic surface displacement field due
to the Wenchuan earthquake. Here we used the up or vertical component to calculate the net coseismic
volume change in the Longmen Shan, ignoring elevation change in the low-relief Sichuan Basin (Fig. 1).
Within the area of the Longmen Shan covered by the landslide mapping (Fig. 1), we calculated the net volume change as

\[V_t = A \sum_{x=1}^{n} (U_x) \]

where \(A \) is the cell area, \(U_x \) is the vertical displacement for each cell, and \(n \) is the number of cells, yielding \(V_t = 2.6 \times 10^9 \) m\(^3\). The standard deviation of the difference between the displacements and ground truth data is not a good statistical indicator of the uncertainty in \(V_t \), because random (uncorrelated) errors are likely to lead to a negligible net contribution to the total volume over the mapped area. Instead, we estimated the uncertainty in \(V_t \) by evaluating the magnitude of statistical variation in \(U_x \) within a non-deforming area far from the earthquake rupture. We chose a 36 km x 36 km area in the Sichuan basin, 45 km away from the fault rupture, containing a high level of noise (mean of 0 m and standard deviation of 1.5 m). We extracted 30 profiles, each 36 km long, within the selected area, and used the least squares method to fit each profile by linear regression. Because the y-intercept value influences the volume estimation beneath each 36 km x 1 pixel area, we examined the y-intercept parameter for each of the profiles and calculated the Root Mean Square Error (RMSE) between the 30 y-intercept parameters and the ground truth data. This yields an RMSE of 0.10 m; when applied over the entire mapped area, this is equivalent to an estimated uncertainty of \(1.2 \times 10^9 \) m\(^3\) on \(V_t \).

References

30. Ouimet, W.B. Landslides associated with the May 12, 2008 Wenchuan earthquake: implications for the erosion and tectonic evolution of the Longmen Shan. Tectonophysics, 491, 244-252 (2010).

Acknowledgements
Funding for this research was provided by NERC grant NE/G002665/1, National Natural Science Foundation of China grant 40841010, and the Willis Research Network. MdM was supported by BRGM Research Direction. We thank Nick Cox, Thomas Dewez, Niels Hovius, Bruce Malamud, Patrick Meunier, David Milledge, Daniel Raucoules, Rosanna Schultz, Harriet Tomlinson, Oliver Tomlinson, Yan Zhaokun, and Zhang Yi for assistance.

Author Contributions
RNP and SW did the landslide mapping and analysis. ALD, SW, LY, HR, and DNP collected field data on the rupture and landslide characteristics. MdM derived the tectonic mass flux. ALD conceived the idea and wrote the paper with input from RNP, NJR, DNP, and MdM.

Additional Information
The authors declare no competing financial interests. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. Correspondence and requests for materials should be addressed to ALD.

Figure Captions
1. Coseismic uplift and landslides triggered by the Wenchuan earthquake. Black polygons show individual landslides. Heavy black lines show surface rupture trace18, while star indicates epicenter. Grey boxes show
extent of imagery used in landslide mapping. Background is coseismic rock uplift field based on SAR analysis, modified from deMichele et al.8. Heavy grey line shows rupture-parallel section line onto which results are projected. B, Beichuan; Y, Yingxiu.

2. \textbf{Along-strike variations in landslide occurrence and coseismic displacement}. All data are projected onto rupture-parallel line A-A' (Fig. 1) at 1 km intervals. a, total area of landslides within each 1-km wide strip. b, landslide volume derived from global bedrock landslide scaling relationship4 applied to individual landslides within each 1-km wide strip; other relationships show similar patterns. c, net coseismic volume change8 in each 1-km wide strip. d, net volume change determined by subtracting landslide volumes from coseismic volume change. e, along-strike distribution of sample area covered by satellite imagery. Local minima in landslide area and volume are not correlated with small sample areas.
Table 1. Landslide scaling relationships and volume estimates

<table>
<thead>
<tr>
<th>Relationship*</th>
<th>α</th>
<th>γ</th>
<th>Volume† (km³)</th>
<th>Mean erosion (m)‡</th>
<th>Erosion rate (mm y⁻¹)§</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 (all landslides)</td>
<td>0.146</td>
<td>1.332±0.005</td>
<td>5.73 +0.41/-0.38</td>
<td>0.42</td>
<td>0.1-0.2</td>
<td>4</td>
</tr>
<tr>
<td>L2 (all bedrock landslides)</td>
<td>0.186</td>
<td>1.35±0.01</td>
<td>9.21 +1.37/-1.19</td>
<td>0.68</td>
<td>0.2-0.4</td>
<td>4</td>
</tr>
<tr>
<td>L3 (mixed Himalayan landslides)</td>
<td>0.257</td>
<td>1.36±0.01</td>
<td>14.6 +2.2/-1.9</td>
<td>1.08</td>
<td>0.3-0.6</td>
<td>4</td>
</tr>
<tr>
<td>G (all landslides)</td>
<td>0.074</td>
<td>1.450±0.009</td>
<td>15.0 +2.0/-1.7</td>
<td>1.1</td>
<td>0.3-0.6</td>
<td>7</td>
</tr>
<tr>
<td>Field measurements</td>
<td>0.106</td>
<td>1.388±0.087</td>
<td>9.08 +22.2/-6.35</td>
<td>0.66</td>
<td>0.2-0.3</td>
<td>This study</td>
</tr>
</tbody>
</table>

Notes:

* L1: global relationship for all landslides from Larsen et al.⁴; L2: global relationship for all bedrock landslides from Larsen et al.⁴; L3: relationship for mixed bedrock and soil landslides in the Himalaya from Larsen et al.⁴; G: global relationship for all landslides from Guzzetti et al.⁷

† Uncertainties are expressed by applying equation (2) with ±1 std error on γ.

‡ Mean erosion represents the average lowering of the ground surface due to landsliding and is calculated by dividing the estimated volume by the total study area (A_map).

§ Spatially-averaged landslide erosion rate is determined by dividing mean erosion range by the approximate earthquake recurrence interval of 2000-4000 yr (refs. 6, 20).
Chengdu

Longmen Shan

32°N

Tibetan Plateau

South China

Min Jiang

Coseismic rock uplift (m)

0

-5

30 km

103°E

104°
Along-strike distance from epicenter (km)

- Net volume change (x10^8 m³)
- Total landslide volume (x10^8 m³)
- Net coseismic displacement (x10^8 m³)
- Total landslide area (x10⁶ m²)
- Sample area (x10⁶ m²)