Skip to main content

Research Repository

Advanced Search

Increased channelization of subglacial drainage during deglaciation of the Laurentide Ice Sheet

Storrar, R.D.; Stokes, C.R.; Evans, D.J.A.

Increased channelization of subglacial drainage during deglaciation of the Laurentide Ice Sheet Thumbnail


Authors

R.D. Storrar



Abstract

The configuration of subglacial meltwater is a critical control on ice sheet dynamics, and the presence of pressurized water distributed across the bed can induce dynamic instabilities. However, this process can be offset by efficient evacuation of water within large subglacial channels, and drainage systems beneath alpine glaciers have been shown to become increasingly channelized throughout the melt season in response to the increased production of meltwater. This seasonal evolution has recently been inferred beneath outlet glaciers of the Greenland Ice Sheet, but the extent to which this process occurs across much larger spatial and temporal scales is largely unknown, introducing considerable uncertainty about the evolution of subglacial drainage networks at the ice sheet scale and associated ice sheet dynamics. This paper uses an unprecedented data set of over 20,000 eskers to reconstruct the evolution of channelized meltwater systems during the final deglaciation of the Laurentide Ice Sheet (13–7 kyr B.P.). We demonstrate that eskers become more frequent during deglaciation and that this coincides with periods of increased rates of ice margin recession and climatic warming. Such behavior is reminiscent of the seasonal evolution of drainage systems observed in smaller glaciers and implies that channelized drainage became increasingly important during deglaciation. An important corollary is that the area of the bed subjected to a less efficient pressurized drainage system decreased, which may have precluded dynamic instabilities, such as surging or ice streaming.

Citation

Storrar, R., Stokes, C., & Evans, D. (2014). Increased channelization of subglacial drainage during deglaciation of the Laurentide Ice Sheet. Geology, 42(3), 239-242. https://doi.org/10.1130/g35092.1

Journal Article Type Article
Acceptance Date Dec 3, 2013
Online Publication Date Jan 10, 2014
Publication Date Jan 10, 2014
Deposit Date Dec 6, 2013
Publicly Available Date Mar 28, 2024
Journal Geology
Print ISSN 0091-7613
Electronic ISSN 1943-2682
Publisher Geological Society of America
Peer Reviewed Peer Reviewed
Volume 42
Issue 3
Pages 239-242
DOI https://doi.org/10.1130/g35092.1

Files

Published Journal Article (Advance online version) (1.9 Mb)
PDF

Copyright Statement
Advance online version © 2014 Geological Society of America. Gold Open Access: This paper is published under the terms of the CC-BY license






You might also like



Downloadable Citations