Skip to main content

Research Repository

Advanced Search

Collision dynamics and entanglement generation of two initially independent and indistinguishable boson pairs in one-dimensional harmonic confinement

Holdaway, D.I.H.; Weiss, C.; Gardiner, S.A.

Collision dynamics and entanglement generation of two initially independent and indistinguishable boson pairs in one-dimensional harmonic confinement Thumbnail


Authors

D.I.H. Holdaway

C. Weiss



Abstract

We investigate finite-number effects in collisions between two states of an initially well-known number of identical bosons with contact interactions, oscillating in the presence of harmonic confinement in one dimension. We investigate two N/2 (interacting) ground states, which are initially displaced from the trap center, and the effects of varying interaction strength. The numerics focus on the simplest case of N=4. In the noninteracting case, such a system would display periodic oscillation with a half harmonic oscillator period (due to the left-right symmetry). With the addition of contact interactions between the bosons, collisions generate entanglement between each of the states and distribute energy into other modes of the oscillator. We study the system numerically via an exact diagonalization of the Hamiltonian with a finite basis, investigating left-right number uncertainty as our primary measure of entanglement. Additionally, we study the time evolution and equilibration of the single-body von Neumann entropy for both the attractive and repulsive cases. We identify parameter regimes for which attractive interactions create behavior qualitatively different from that of repulsive interactions, due to the presence of bound states (quantum solitons), and explain the processes behind this.

Citation

Holdaway, D., Weiss, C., & Gardiner, S. (2013). Collision dynamics and entanglement generation of two initially independent and indistinguishable boson pairs in one-dimensional harmonic confinement. Physical Review A, 87(4), Article 043632. https://doi.org/10.1103/physreva.87.043632

Journal Article Type Article
Publication Date Apr 1, 2013
Deposit Date Sep 6, 2013
Publicly Available Date Mar 29, 2024
Journal Physical Review A
Print ISSN 1050-2947
Electronic ISSN 1094-1622
Publisher American Physical Society
Peer Reviewed Peer Reviewed
Volume 87
Issue 4
Article Number 043632
DOI https://doi.org/10.1103/physreva.87.043632

Files

Published Journal Article (7 Mb)
PDF

Copyright Statement
© 2013 American Physical Society





You might also like



Downloadable Citations