Skip to main content

Research Repository

Advanced Search

13CO and C18O emission from a dense gas disc at z = 2.3: abundance variations, cosmic rays and the initial conditions for star formation

Danielson, A.L.R.; Swinbank, A.M.; Smail, Ian; Bayet, E.; van der Werf, Paul P.; Cox, P.; Edge, A.C.; Henkel, C.; Ivison, R.J.

13CO and C18O emission from a dense gas disc at z = 2.3: abundance variations, cosmic rays and the initial conditions for star formation Thumbnail


Authors

A.L.R. Danielson

E. Bayet

Paul P. van der Werf

P. Cox

C. Henkel

R.J. Ivison



Abstract

We analyse the spectral line energy distributions of 13CO and C18O for the J = 1→0 up to J = 7→6 transitions in the gravitationally lensed ultraluminous infrared galaxy SMM J2135−0102 at z = 2.3. This is the first detection of 13CO and C18O in a high-redshift star-forming galaxy. These data comprise observations of six transitions taken with Plateau de Bure Interferometer and we combine these with ∼33 GHz Jansky Very Large Array data and our previous spatially resolved 12CO and continuum emission information to better constrain the properties of the interstellar medium (ISM) within this system. We study both the velocity-integrated and kinematically decomposed properties of the galaxy and coupled with a large velocity gradient (LVG) model we find that the star-forming regions in the system vary in their cold gas properties, in particular in their chemical abundance ratios. We find strong C18O emission both in the velocity-integrated emission and in the two kinematic components at the periphery of the system, where the C18O line flux is equivalent to or higher than the 13CO. We derive an average velocity-integrated flux ratio of 13CO/C18O ∼ 1 which suggests an abundance ratio of [13CO]/[C18O] which is at least seven times lower than that in the Milky Way. This is suggestive of enhanced C18O abundance, perhaps indicating star formation preferentially biased to high-mass stars. We estimate the relative contribution to the ISM heating from cosmic rays and UV of (30–3300) × 10−25 erg s−1 and 45 × 10−25 erg s−1 per H2 molecule respectively and find them to be comparable to the total cooling rate of (0.8–20) × 10−25 erg s−1 from the CO. However, our LVG models indicate high (>100 K) temperatures and densities (>103) cm−3 in the ISM which may suggest that cosmic rays play a more important role than UV heating in this system. If cosmic rays dominate the heating of the ISM, the increased temperature in the star-forming regions may favour the formation of massive stars and so explain the enhanced C18O abundance. This is a potentially important result for a system which may evolve into a local elliptical galaxy.

Citation

Danielson, A., Swinbank, A., Smail, I., Bayet, E., van der Werf, P. P., Cox, P., …Ivison, R. (2013). 13CO and C18O emission from a dense gas disc at z = 2.3: abundance variations, cosmic rays and the initial conditions for star formation. Monthly Notices of the Royal Astronomical Society, 436(3), 2793-2809. https://doi.org/10.1093/mnras/stt1775

Journal Article Type Article
Publication Date Dec 1, 2013
Deposit Date Oct 17, 2013
Publicly Available Date Apr 3, 2014
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 436
Issue 3
Pages 2793-2809
DOI https://doi.org/10.1093/mnras/stt1775
Keywords ISM abundances, ISM molecules, Galaxies, High-redshift galaxies, Starburst submillimetre.

Files

Published Journal Article (1.2 Mb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society





You might also like



Downloadable Citations