We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Expression of the blue-light receptor cryptochrome in the human retina.

Thompson, C. L. and Rickman, C. B. and Shaw, S. J. and Ebright, J. N. and Kelly, U. and Sancar, A. and Rickman, D. W. (2003) 'Expression of the blue-light receptor cryptochrome in the human retina.', Investigative ophthalmology and visual science., 44 (10). pp. 4515-4521.


PURPOSE. To analyze the patterns of expression of the cryptochromes, CRY1 and CRY2, in the human retina and to correlate expression of these putative blue-light receptors with nonvisual photoreceptor localization. METHODS. CRY1 and CRY2 mRNA expression was analyzed in 4-mm diameter punches of macula and midperipheral human retina by quantitative RT-PCR. CRY2 protein expression was examined by immunohistochemistry in cross sections of human retina, and its subcellular localization was determined by immunoblot analysis of fractionated human retinal extracts. RESULTS. CRY2 mRNA was 11 times more abundant than CRY1 throughout adult human retina. CRY2 immunoreactivity was detected in most cells in the ganglion cell layer (GCL) and in a subset of cells in the inner nuclear layer (INL) in both the macula and periphery. Immunoperoxidase staining further revealed that CRY2 was localized throughout the cytoplasm of cells in the GCL as well as within nuclei. This intracellular localization of CRY2 was confirmed by immunoblot analysis of fractionated human retinal extracts. CONCLUSIONS. Photopigments governing circadian photoreception have been localized to the inner retina. The relative abundance of CRY2 transcripts, coupled with CRY2 localization to the inner retina, supports a photoreceptive role for CRY2 in human retina. Furthermore, the discovery that CRY2 is also localized within the cytoplasm of some cells in the GCL, suggests it may perform a function separate from its known nuclear role in the transcriptional feedback loop underlying the molecular circadian clock.

Item Type:Article
Keywords:Immunohistochemistry, Immunoblot Analysis, Cell Lysates, Cell Fractionation, Peptide Adsorption, CRY1, CRY2.
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:14 Nov 2006
Last Modified:19 Dec 2017 15:35

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library