CONVERGENCE IN A MULTIDIMENSIONAL RANDOMIZED KEYNESIAN BEAUTY CONTEST

MICHAEL GRINFELD,* University of Strathclyde

STANISLAV VOLKOV,** Lund University and University of Bristol

ANDREW R. WADE,*** Durham University

Abstract

We study the asymptotics of a Markovian system of \(N \geq 3 \) particles in \([0,1]^d\) in which, at each step in discrete time, the particle farthest from the current centre of mass is removed and replaced by an independent \(U[0,1]^d \) random particle.

We show that the limiting configuration contains \(N - 1 \) coincident particles at a random location \(\xi_N \in [0,1]^d \). A key tool in the analysis is a Lyapunov function based on the squared radius of gyration (sum of squared distances) of the points. For \(d = 1 \) we give additional results on the distribution of the limit \(\xi_N \), showing, among other things, that it gives positive probability to any nonempty interval subset of \([0,1]\), and giving a reasonably explicit description in the smallest nontrivial case, \(N = 3 \).

Keywords: Keynesian beauty contest; radius of gyration; rank-driven process; sum of squared distances.

2010 Mathematics Subject Classification: Primary 60J05

Secondary 60D05; 60F15; 60K35; 82C22; 91A15

1. Introduction, model, and results

In a Keynesian beauty contest, \(N \) players each guess a number, the winner being the player whose guess is closest to the mean of all the \(N \) guesses; the name marks Keynes's discussion of “those newspaper competitions in which the competitors have to pick out the six prettiest faces from a hundred photographs, the prize being awarded to the competitor whose choice most nearly corresponds to the average preferences of the competitors as a whole” [7, Ch. 12, §V]. Moulin [10, p. 72] formalized a version of the game played on a real interval, the “\(p \)-beauty contest”, in which the target is \(p \) \((p > 0)\) times the mean value. See e.g. [2] and references therein for some recent work on game-theoretic aspects of such “contests” in economics.

In this paper we study a stochastic process based on an iterated version of the game, in which players randomly choose a value in \([0,1]\), and at each step the worst performer

* Postal address: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK.

** Postal address: Centre for Mathematical Sciences, Lund University, Box 118 SE-22100, Lund, Sweden, and Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK.

*** Postal address: Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
Let $d \in \mathbb{N} := \{1, 2, \ldots\}$. We use the notation $X_n = (x_1, x_2, \ldots, x_n)$ for a vector of n points $x_i \in \mathbb{R}^d$. We write $\mu_n(X_n) := n^{-1} \sum_{i=1}^n x_i$ for the barycentre of X_n, and $\| \cdot \|$ for the Euclidean norm on \mathbb{R}^d. Let $\text{ord}(X_n) = (x_{(1)}, x_{(2)}, \ldots, x_{(n)})$ denote the barycentric order statistics of x_1, \ldots, x_n, so that $\|x_{(1)} - \mu_n(X_n)\| \leq \|x_{(2)} - \mu_n(X_n)\| \leq \cdots \leq \|x_{(n)} - \mu_n(X_n)\|$; any ties are broken randomly. We call $X_n^* := x_{(n)}$ the extreme point of X_n, a point of x_1, \ldots, x_n farthest from the barycentre. We define the core of X_n as $X_n^\circ := (x_{(1)}, \ldots, x_{(n-1)})$, the vector of x_1, \ldots, x_n with the extreme point removed.

The Markovian model that we study is defined as follows. Fix $X_1(0), \ldots, X_N(0)$, distinct points in $[0, 1]^d$, and write $X_N(0) := (X_{(1)}(0), \ldots, X_{(N)}(0))$ for the corresponding ordered vector. One possibility is to start with a uniform random initial configuration, by taking $X_1(0), \ldots, X_N(0)$ to be independent $U[0,1]^d$ random variables; here and elsewhere $U[0,1]^d$ denotes the uniform distribution on $[0,1]^d$. In this uniform random initialization, all N points are indeed distinct with probability 1. Given $X_N(t)$, replace $X_N(t) = X_{(N)}(t)$ by an independent $U[0,1]^d$ random variable U_{t+1}, so that $X_N(t+1) = \text{ord}(X_{(1)}(t), \ldots, X_{(N-1)}(t), U_{t+1})$.

The interesting case is when $N \geq 3$: the case $N = 1$ is trivial, and the case $N = 2$ is also uninteresting since at each step either point is replaced with probability 1/2 by a $U[0,1]$ variable, so that, regardless of the initial configuration, after a finite number of steps we will have two independent $U[0,1]$ points. Our main result, Theorem 1.1, shows that for $N \geq 3$ all but the most extreme point of the configuration converge to a common limit.

Theorem 1.1. Let $d \in \mathbb{N}$ and $N \geq 3$. Let $X_N(0)$ consist of N distinct points in $[0, 1]^d$. There exists a random $\xi_N := \xi_N(X_N(0)) \in [0, 1]^d$ such that

$$X_N(t) \xrightarrow{a.s.} (\xi_N, \xi_N, \ldots, \xi_N), \quad \text{and} \quad X_N(t) - U_t \xrightarrow{a.s.} 0,$$

as $t \to \infty$. In particular, for $U \sim U[0,1]^d$, as $t \to \infty$,

$$X_N(t) \xrightarrow{d} (\xi_N, \xi_N, \ldots, \xi_N, U).$$

Remark 1.1. Under the conditions of Theorem 1.1, despite the fact that $X_N^*(t) - U_t \to 0$ a.s., we will see below that $X_N^*(t) \neq U_t$ infinitely often a.s.

Theorem 1.1 is proved in Section 2. Then, Section 3 is devoted to the one-dimensional case, where we obtain various additional results on the limit ξ_N. Finally, the Appendices, A and B, collect some results on uniform spacings and continuity of distributional fixed-points that we use in parts of the analysis in Section 3.

2. Proof of convergence

Intuitively, the evolution of the process is as follows. If, on replacement of the extreme point, the new point is the next extreme point (measured with respect to the
new centre of mass), then the core is unchanged. However, if the new point is not extreme, it typically penetrates the core significantly, while a more extreme point is thrown out of the core, reducing the size of the core in some sense (we give a precise statement below). Tracking the evolution of the core, by following its centre of mass, one sees increasingly long periods of inactivity, since as the size of the core decreases changes occur less often, and moreover the magnitude of the changes decreases in step with the size of the core. The dynamics are nontrivial, but bear some resemblance to random walks with decreasing steps (see e.g. [3, 8] and references therein) as well as processes with reinforcement such as the Pólya urn (see e.g. [12] for a survey). The process is also reminiscent in some ways of iterated interval division [6] or sequential adsorption with interaction [11].

Our analysis will rest on a 'Lyapunov function' for the process, that is, a function associated with the process, based on the sum of squared distances of a configuration, see e.g. [5], p. 95. Note also that calculus verifies the useful variational formula

\[a \text{ monotone decreasing function} \]

a detailed proof of the (elementary) final equality in (2.1) may be found on pp. 95–96 of [5], for example. We remark that \(\frac{1}{n} G_n \) is the squared radius of gyration of \(x_1, \ldots, x_n \); see e.g. [5], p. 95. Note also that calculus verifies the useful variational formula

\[G_n(x_1, \ldots, x_n) = \inf_{y \in \mathbb{R}^d} \sum_{i=1}^{n} \|x_i - y\|^2. \]

\[(2.2) \]

For \(n \geq 2 \), define

\[F_n(\mathcal{X}_n) := F_n(x_1, \ldots, x_n) := G_n-1(\mathcal{X}_n) = G_n-1(x_1(1), \ldots, x_{(n-1)}). \]

Lemma 2.1. Let \(n \geq 2 \) and \(\mathcal{X}_n = (x_1, x_2, \ldots, x_n) \in (\mathbb{R}^d)^n \). Then for any \(x \in \mathbb{R}^d \),

\[F_n(x_1, \ldots, x_{(n-1)}, x) \leq F_n(\mathcal{X}_n). \]

Proof. For ease of notation, we write simply \((x_1, \ldots, x_n)\) for \((x_{(1)}, \ldots, x_{(n)})\), i.e., we relabel so that \(x_j\) is the \(j\)th closest point to \(\mu_n(\mathcal{X}_n)\). Then \(\mathcal{X}_n^* = x_n, \mathcal{X}_n' = (x_1, \ldots, x_{n-1})\), and

\[F_{\text{old}} := F_n(\mathcal{X}_n) = G_n-1(x_1, \ldots, x_{n-1}) = \sum_{i=1}^{n-1} \|x_i - \mu_n'\|^2, \]

\[(2.3) \]
where \(\mu'_{\text{old}} := \mu_{n-1}(X'_1) \). We compare \(F_{\text{old}} \) to \(F_n \), evaluated on the set of points obtained by removing \(x_n \) and replacing it with some \(x \in \mathbb{R}^d \).

Write \(y := \{x_1, \ldots, x_{n-1}, x\}^* \) for the new extreme point. Then

\[
F_{\text{new}} := F_n(x_1, \ldots, x_{n-1}, x) = \sum_{i=1}^{n-1} \|x_i - \mu'_{\text{new}}\|^2 + \|x - \mu'_{\text{new}}\|^2 - \|y - \mu'_{\text{new}}\|^2, \tag{2.4}
\]

where

\[
\mu'_{\text{new}} := \frac{1}{n-1} \left(\sum_{i=1}^{n-1} x_i + x - y \right) = \mu'_{\text{old}} + \frac{x - y}{n - 1}. \tag{2.5}
\]

Denote \(\mu_{\text{new}} := \mu_n(x_1, \ldots, x_{n-1}, x) \), so

\[
\mu'_{\text{new}} = \frac{n\mu_{\text{new}}}{n - 1} - \frac{y}{n - 1}. \tag{2.6}
\]

From (2.3), (2.4), and (2.5), we obtain

\[
F_{\text{new}} - F_{\text{old}} = \sum_{i=1}^{n-1} \left(\|x_i - \mu'_{\text{new}}\|^2 - \|x_i - \mu'_{\text{old}}\|^2 \right) + \|x - \mu'_{\text{new}}\|^2 - \|y - \mu'_{\text{new}}\|^2. \tag{2.7}
\]

For the sum on the right-hand side of (2.7), we have that

\[
\sum_{i=1}^{n-1} \left(\|x_i - \mu'_{\text{new}}\|^2 - \|x_i - \mu'_{\text{old}}\|^2 \right) = \sum_{i=1}^{n-1} \left(2x_i \cdot (\mu'_{\text{old}} - \mu'_{\text{new}}) + \|\mu'_{\text{new}}\|^2 - \|\mu'_{\text{old}}\|^2 \right)
= (n - 1) (2\mu'_{\text{old}} \cdot (\mu'_{\text{old}} - \mu'_{\text{new}}) + \|\mu'_{\text{new}}\|^2 - \|\mu'_{\text{old}}\|^2)
= (n - 1) \left(\|\mu'_{\text{old}}\|^2 - 2(\mu'_{\text{old}} \cdot \mu'_{\text{new}}) + \|\mu'_{\text{new}}\|^2 \right).
\]

Simplifying this last expression and substituting back into (2.7) gives

\[
F_{\text{new}} - F_{\text{old}} = \frac{\|x - y\|^2}{n - 1} + \|x\|^2 - \|y\|^2 - 2\mu'_{\text{new}} \cdot (x - y)
= \frac{\|x\|^2 + \|y\|^2 - 2x \cdot y}{n - 1} + \|x\|^2 - \|y\|^2 - 2 \left(\frac{n\mu_{\text{new}}}{n - 1} - \frac{y}{n - 1} \right) \cdot (x - y).
\]

Hence we conclude that

\[
F_{\text{new}} - F_{\text{old}} = \frac{n}{n - 1} \left(\|x\|^2 - \|y\|^2 - 2\mu_{\text{new}} \cdot (x - y) \right)
= \frac{n}{n - 1} \left(\|x - \mu_{\text{new}}\|^2 - \|y - \mu_{\text{new}}\|^2 \right) \leq 0, \tag{2.8}
\]

since \(y \) is, by definition, the farthest point from \(\mu_{\text{new}} \).

Now we return to the stochastic model. Define

\[
F(t) := F_N(X(t)). \tag{2.9}
\]

Lemma 2.1 has the following immediate consequence.
Corollary 2.1. Let \(N \geq 2 \). Then \(F(t + 1) \leq F(t) \).

Corollary 2.1 shows that our Lyapunov function \(F(t) \) is nonincreasing; later we show that \(F(t) \to 0 \) a.s. (see Lemma 2.4 below). First, we need to relate \(F(t) \) to the diameter of the point set \(\mathcal{X}_\nu(t) \). For \(n \geq 2 \) and \(x_1, \ldots, x_n \in \mathbb{R}^d \), write

\[
D_n(x_1, \ldots, x_n) := \max_{1 \leq i, j \leq n} \|x_i - x_j\|.
\]

Lemma 2.2. Let \(n \geq 2 \) and \(x_1, \ldots, x_n \in \mathbb{R}^d \). Then

\[
\frac{1}{2} D_n(x_1, \ldots, x_n)^2 \leq G_n(x_1, \ldots, x_n) \leq \frac{1}{2} (n - 1) D_n(x_1, \ldots, x_n)^2.
\]

Remark 2.1. The lower bound in Lemma 2.2 is sharp, and is attained by collinear configurations with two diametrically opposed points \(x_i, x_j \) and all the other \(n - 2 \) points at the midpoint \(\mu_2(x_i, x_j) = \mu_n(x_1, \ldots, x_n) \). The upper bound in Lemma 2.2 is not, in general, sharp; determining the sharp upper bound is a nontrivial problem. The bound \(G_n(x_1, \ldots, x_n) \leq \frac{2}{n} D_n(x_1, \ldots, x_n)^2 \) from [16] is also not always sharp. Witsenhausen [16] conjectured that the maximum is attained if and only if the points are distributed as evenly as possible among the vertices of a regular \(d \)-dimensional simplex of edge-length \(D_n(x_1, \ldots, x_n) \); this was proved relatively recently [1, 15].

Proof of Lemma 2.2. Fix \(x_1, \ldots, x_n \in \mathbb{R}^d \). For ease of notation, write \(\mu = \mu_n(x_1, \ldots, x_n) \). First we prove the lower bound. For \(n \geq 2 \), using the second form of \(G_n \) in (2.1),

\[
G_n(x_1, \ldots, x_n) = \sum_{i=1}^{n} \|x_i - \mu\|^2 \geq \|x_i - \mu\|^2 + \|x_j - \mu\|^2,
\]

for \((x_i, x_j)\) a diameter, i.e., \(D_n(x_1, \ldots, x_n) = \|x_i - x_j\| \). By the \(n = 2 \) case of (2.2),

\[
\|x_i - \mu\|^2 + \|x_j - \mu\|^2 \geq 2\|x_i - \mu_2(x_i, x_j)\|^2 = \frac{1}{2} \|x_i - x_j\|^2.
\]

This gives the lower bound. For the upper bound, from the first form of \(G_n \) in (2.1),

\[
G_n(x_1, \ldots, x_n) \leq \frac{1}{n} \sum_{i=1}^{n} (i - 1) D_n(x_1, \ldots, x_n)^2,
\]

by the definition of \(D_n \), which yields the result.

Let \(D(t) := D_{N-1}(\mathcal{X}_\nu(t)) \).

Remark 2.2. By Lemma 2.2 (or (2.1)), \(G_2(\mathcal{X}_\nu(t)) = \frac{4}{9} D_2(\mathcal{X}_\nu(t))^2 \), so when \(N = 3 \), Lemma 2.1 implies that \(D(t + 1) \leq D(t) \) a.s. as well. If \(d = 1 \), it can be shown that \(D(t) \) is nonincreasing also when \(N = 4 \). In general, however, \(D(t) \) can increase.

Let \(\mathcal{F}_t := \sigma(\mathcal{X}_N(0), \mathcal{X}_N(1), \ldots, \mathcal{X}_N(t)) \), the \(\sigma \)-algebra generated by the process up to time \(t \). Let \(B(x; r) \) denote the closed Euclidean \(d \)-ball with centre \(x \in \mathbb{R}^d \) and radius \(r \) greater than zero. Define the events

\[
A_{t+1} := \{ U_{t+1} \in B(\mu_{N-1}(\mathcal{X}_\nu(t)); 3D(t)) \}, \quad A'_{t+1} := \{ U_{t+1} \in B(\mu_{N-1}(\mathcal{X}_\nu(t)); D(t)/4) \}.
\]
Lemma 2.3. There is an absolute constant $\gamma > 0$ for which, for all $N \geq 3$ and all t,
\[A^t_{t+1} \subseteq \{ F(t+1) - F(t) \leq -\gamma N^{-1} F(t) \} \subseteq \{ F(t+1) - F(t) < 0 \} \subseteq A_{t+1}. \]

Moreover, there exist constants $c > 0$ and $C < \infty$, depending only on d, for which, for all $N \geq 3$ and all t, a.s.,
\[P[F(t+1) - F(t) \leq -\gamma N^{-1} F(t) | F_t] \geq P[A^t_{t+1} | F_t] \geq cN^{-d/2}(F(t))^{d/2}; \]
\[P[F(t+1) - F(t) < 0 | F_t] \leq P[A_{t+1} | F_t] \leq C(F(t))^{d/2}. \]

Proof. For simplicity we write X_1, \ldots, X_{N-1} instead of $X_{(1)}(t), \ldots, X_{(N-1)}(t)$ and D instead of $D(t) = D_{N-1}(X_1, \ldots, X_{N-1})$. By definition of D, there exists some $i \in \{1, \ldots, N-1\}$ such that $\|\mu_{old}' - X_i\| \leq D/2$, where $\mu_{old}' = \mu_{N-1}(X_1, \ldots, X_{N-1})$.

Given F_t, the event A^t_{t+1}, that the new point $U := U_{t+1}$ falls in $B(\mu_{old}; D/4)$, has probability bounded below by $\theta_d D^d$, where $\theta_d > 0$ depends only on d. Let $\mu_{new} := \mu_N(X_1, \ldots, X_{N-1}, U)$. Suppose that A^t_{t+1} occurs. Then,
\[\|\mu_{new} - \mu_{old}'\| = \frac{1}{N}\|U - \mu_{old}'\| \leq \frac{D}{4N} \leq \frac{D}{12}. \]

since $N \geq 3$. Hence, by (2.13) and the triangle inequality,
\[\|U - \mu_{new}\| \leq \|U - \mu_{old}'\| + \|\mu_{new} - \mu_{old}'\| \leq \frac{D}{4} + \frac{D}{12} = \frac{4D}{12} \]

On the other hand, by another application of the triangle inequality and (2.13),
\[\|\mu_{new} - X_i\| \geq \|\mu_{old}' - X_i\| - \|\mu_{new} - \mu_{old}'\| \geq \frac{D}{2} - \frac{D}{12} = \frac{5D}{12}. \]

Then, by definition, the extreme point $Y := \{X_1, \ldots, X_{N-1}, U\}^*$ satisfies
\[\|Y - \mu_{new}\| \geq \|\mu_{new} - X_i\| \geq \frac{5D}{12}. \]

Hence from the $x = U$ case of (2.8) with the bounds (2.14) and (2.15), we conclude
\[F(t+1) - F(t) \leq \frac{N}{N-1} \left(\left(\frac{4D}{12} \right)^2 - \left(\frac{5D}{12} \right)^2 \right) 1(A^t_{t+1}) \leq -\frac{9}{144} D^2 1(A^t_{t+1}). \]

for all $N \geq 3$; the first inclusion in (2.10) follows (with $\gamma = 9/72$) from (2.16) together with the fact that, by the second inequality in Lemma 2.2, $D^2 \geq 2N^{-1} F(t)$. This in turn implies (2.11), using the fact that $P[A^t_{t+1} | F_t] \geq \theta_d D^d$.

Next we consider the event A_{t+1}. Using the same notation as above, we have that
\[\|\mu_{new} - U\| \geq \|\mu_{old}' - U\| - \|\mu_{new} - \mu_{old}'\| = \left(1 - \frac{1}{N} \right) \|\mu_{old}' - U\|, \]

by the equality in (2.13). Also, for any $k \in \{1, \ldots, N-1\}$,
\[\|\mu_{new} - X_k\| \leq \|\mu_{old}' - X_k\| + \|\mu_{old}' - \mu_{new}\| \leq D + \frac{1}{N} \|\mu_{old}' - U\|. \]
by (2.13) again. Combining these estimates we obtain, for any \(k \in \{1, \ldots, N - 1\} \),

\[
\|\mu_{\text{new}} - U\| - \|\mu_{\text{new}} - X_k\| \geq \left(1 - \frac{2}{N}\right)\|\mu_{\text{old}} - U\| - D \geq \frac{1}{3}\|\mu_{\text{old}}' - U\| - D,
\]

for \(N \geq 3 \). So in particular, \(\|\mu_{\text{new}} - U\| > \|\mu_{\text{new}} - X_k\| \) for all \(k \in \{1, \ldots, N - 1\} \) provided \(\|\mu_{\text{old}}' - U\| > 3D \), i.e., \(U \notin B(\mu_{\text{old}}'; 3D) \). In this case, \(U \) is the extreme point among \(U, X_1, \ldots, X_{N-1} \), i.e.,

\[
A_{t+1}^c \subseteq \{X_k^\ast (t + 1) = U_{t+1}\}. \tag{2.17}
\]

In particular, on \(A_{t+1}^c \), \(F(t + 1) = F(t) \), and \(F(t + 1) < F(t) \) only if \(A_{t+1} \) occurs, giving the final inclusion in (2.10). Since \(\mathbb{P}[A_{t+1} | F_t] \) is bounded above by \(C_d D^d \) for a constant \(C_d < \infty \) depending only on \(d \), (2.12) follows from the first inequality in Lemma 2.2. This completes the proof.

Lemma 2.4. Suppose that \(N \geq 3 \). Then, as \(t \to \infty \), \(F(t) \to 0 \) a.s. and in \(L^2 \).

Proof. Let \(\varepsilon > 0 \) and let \(\sigma := \min\{t \in \mathbb{Z}_+: F(t) \leq \varepsilon\} \), where \(\mathbb{Z}_+ := \{0, 1, 2, \ldots\} \). Then by (2.11), there exists \(\delta > 0 \) (depending on \(d, \varepsilon, \) and \(N \)) such that, a.s.,

\[
\mathbb{P}\left[F(t + 1) - F(t) \leq -\delta \mid F_t \right] \geq \delta \mathbf{1}\{t < \sigma\}.
\]

Hence, since \(F(t + 1) - F(t) \leq 0 \) a.s. by Corollary 2.1,

\[
\mathbb{E}[F(t + 1) - F(t) \mid F_t] \leq -\delta^2 \mathbf{1}\{t < \sigma\}. \tag{2.18}
\]

By Corollary 2.1, \(F(t) \) is nonnegative and nonincreasing, and hence \(F(t) \) converges a.s. as \(t \to \infty \) to some nonnegative limit \(F(\infty) \); the convergence also holds in \(L^2 \) since \(F(t) \) is uniformly bounded. In particular, \(\mathbb{E}[F(t)] \to \mathbb{E}[F(\infty)] \). So taking expectations in (2.18) and letting \(t \to \infty \) we obtain

\[
\lim_{t \to \infty} \sup_{t > \tau_0} \delta^2 \mathbb{P}[\sigma > t] \leq 0,
\]

which implies that \(\mathbb{P}[\sigma > t] \to 0 \) as \(t \to \infty \). Thus \(\sigma < \infty \) a.s., which together with the monotonicity of \(F(t) \) (Corollary 2.1) implies that \(F(t) \leq \varepsilon \) for all \(t \) sufficiently large. Since \(\varepsilon > 0 \) was arbitrary, the result follows.

Recall the definition of \(A_t \) and \(A_t^c \) from before Lemma 2.3. Define \((F_t) \) stopping times \(\tau_0 := 0 \) and, for \(n \in \mathbb{N} \), \(\tau_n := \min\{t > \tau_{n-1} : A_t \) occurs\}. Then \(F(t) < F(t - 1) \) can only occur if \(t = \tau_n \) for some \(n \). Since \(\mathbb{P}[A_{t+1} | F_t] \) is bounded below by \(c F(t)^{d/2} \) for some \(c > 0 \), it is not hard to see that, provided \(F(0) > 0 \), \(A_t \) occurs infinitely often, a.s. Indeed, suppose that \(F(0) > 0 \) and \(A_t \) occurs only finitely often. Then \(F(t) \) has a non-zero limit. On the other hand, \(\sum_i c F(t)^{d/2} \leq \sum_i \mathbb{P}[A_{t+1} | F_t] < \infty \), by Lévy’s extension of the Borel–Cantelli lemma, so that \(F(t) \to 0 \) a.s., which is a contradiction. Hence \(\tau_n < \infty \), a.s., for all \(n \).

Lemma 2.5. Let \(N \geq 3 \). There exists \(\alpha > 0 \) such that, a.s., \(D(\tau_n) \leq e^{-\alpha n} \) for all \(n \) sufficiently large.
Proof. We have from (2.16) and the second inequality in Lemma 2.2 that
\[F(\tau_n) - F(\tau_n - 1) \leq -\delta F(\tau_n - 1) \mathbf{1}(A_{\tau_n}') , \]
for some \(\delta > 0 \). Note also that, by definition of the stopping times \(\tau_n \), \(F(\tau_n - 1) = F(\tau_{n-1}) \).

Hence,
\[\mathbb{P}[F(\tau_n) - F(\tau_{n-1}) \leq -\delta F(\tau_{n-1}) | F_{\tau_{n-1}}] \geq \mathbb{P}[A_{\tau_n}' | F_{\tau_{n-1}}] \geq \delta , \]
taking \(\delta > 0 \) small enough, since, using the fact that \(\mathbf{1}(A_{\tau_n}) = 1 \) a.s.,
\[\mathbb{P}[A_{\tau_n}' | F_{\tau_{n-1}}] = \mathbb{E} \left[\mathbb{P}[A_{\tau_n}' | F_{\tau_n}] \mathbf{1}(A_{\tau_n}) | F_{\tau_{n-1}} \right] = \mathbb{E} \left[\mathbb{P}[A_{\tau_n}' | A_{\tau_n}] | F_{\tau_{n-1}} \right] , \]
where by definition of \(A_t \) and \(A_t' \), \(\mathbb{P}[A_{\tau_n}' | A_{\tau_n}] \) is uniformly positive. Since \(F(t + 1) - F(t) \leq 0 \) a.s. (by Corollary 2.1) it follows that
\[\mathbb{E} \left[F(\tau_n) - F(\tau_{n-1}) | F_{\tau_{n-1}} \right] \leq -\delta^2 F(\tau_{n-1}) . \]

Taking expectations, we obtain \(\mathbb{E}[F(\tau_n)] \leq (1 - \delta^2) \mathbb{E}[F(\tau_{n-1})] \), which implies that \(\mathbb{E}[F(\tau_n)] = O(e^{-cn}) \), for some \(c > 0 \) depending on \(\delta \). Then by Markov’s inequality, \(\mathbb{P}[F(\tau_n) \geq e^{-cn/2}] = O(e^{-cn/2}) \), which implies that \(F(\tau_n) = O(e^{-cn/2}) \), a.s., by the Borel–Cantelli lemma. Then the first inequality in Lemma 2.2 gives the result.

Remark 2.3. The proof of Lemma 2.5 shows that \(\mathbb{P}[A_{\tau_n}' | F_{\tau_{n-1}}] \) is uniformly positive, so Lévy’s version of the Borel–Cantelli lemma, with the fact that \(\tau_n < \infty \) a.s. for all \(n \), shows that \(A_t' \) occurs for infinitely many \(t \), a.s. With the proof of Lemma 2.3, this shows that \(X_N'(t) \neq U_t \) infinitely often, as claimed in Remark 1.1.

We are almost ready to complete the proof of Theorem 1.1. We state the main step in the remaining argument as the first part of the next lemma, while the second part of the lemma we will need in Section 3.3 below. For \(\varepsilon > 0 \), define the stopping time \(\nu_\varepsilon := \min \{ t \in \mathbb{N} : F(t) < \varepsilon \} \); for any \(\varepsilon > 0 \), \(\nu_\varepsilon < \infty \) a.s., by Lemma 2.4.

Lemma 2.6. Let \(N \geq 3 \). Then there exists \(\xi_N \in [0,1]^d \) such that \(\mu_{N-1}(X_N'(t)) \rightarrow \xi_N \) a.s. and in \(L^2 \) as \(t \rightarrow \infty \). Moreover, there exists an absolute constant \(C \) such that for any \(\varepsilon > 0 \), and any \(t_0 \in \mathbb{N} \), on \(\{ \nu_\varepsilon \leq t_0 \} \), a.s.,
\[\mathbb{E} \left[\max_{t \geq t_0} \| \mu_{N-1}(X_N'(t)) - \mu_{N-1}(X_N'(t_0)) \| \middle| F_{t_0} \right] \leq C \varepsilon . \]

Proof. Let \(\mu'(t) := \mu_{N-1}(X_N'(t)) \). Observe that for \(N \geq 3 \), \(X_N'(t) \) and \(X_N'(t-1) \) have at least one point in common; choose one such point, and call it \(Z(t) \). Then \(\mu'(t) \in \text{hull} \, X_N'(t) \subseteq \text{hull} \, X_N(t) \), where \(\text{hull} \, X \) denotes the convex hull of the point set \(X \). So \(\| Z(t) - \mu'(t) \| \leq D(t) \). Similarly \(\| Z(t) - \mu'(t-1) \| \leq D(t-1) \).

By definition of \(\tau_n \), \(\mu'(t) = \mu'(t-1) \) and \(D(t) = D(t-1) \) unless \(t = \tau_n \) for some \(n \), in which case \(\mu'(\tau_n-1) = \mu'(\tau_n-1) \) and \(D(\tau_n) = D(\tau_{n-1}) \). Hence,
\begin{align*}
\sum_{t \geq 1} \| \mu'(t) - \mu'(t-1) \| &= \sum_{n \geq 1} \| \mu'(\tau_n) - \mu'(\tau_n-1) \| \\
&\leq \sum_{n \geq 1} \left(\| \mu'(\tau_n) - Z(\tau_n) \| + \| \mu'(\tau_n-1) - Z(\tau_n) \| \right) ,
\end{align*}
(2.19)
by the triangle inequality. Then the preceding remarks imply that

\[\sum_{t \geq 1} \| \mu'(t) - \mu'(t - 1) \| \leq \sum_{n \geq 1} (D(\tau_n) + D(\tau_{n-1})) < \infty, \text{ a.s.,} \]

by Lemma 2.5. Hence there is some (random) \(\xi_N \in [0, 1]^d \) for which \(\mu'(t) \to \xi_N \) a.s. as \(t \to \infty \), and \(L^2 \) convergence follows by the bounded convergence theorem.

For the final statement in the lemma we use a variation of the preceding argument. Let \(M := \max \{ n \in \mathbb{Z}_+ : \tau_n \leq t_0 \} \). Then \(F(t_0) = F(\tau_M) \) and \(\mu'(\tau_M) = \mu'(t_0) \), so that on \(\{ \nu \leq t_0 \} \), we have \(\{ \nu \leq \tau_M \} \) as well. Hence (by Corollary 2.1) \(F(\tau_M) \to 0 \) a.s., again by Lemma 2.5. This gives the final part of (1.1). A similar argument to that in the proof of Lemma 2.5 shows that, for \(m \geq 0 \),

\[\mathbb{E}[F(\tau_{M+m}) \mid F_{t_0}] \leq e^{-cm} \mathbb{E}[F(\tau_M) \mid F_{t_0}] \leq \varepsilon^2 e^{-cm}, \]

on \(\{ \nu \leq t_0 \} \), where \(c > 0 \) depends on \(N \) but not on \(m \) or \(\varepsilon \). Thus by Lemma 2.2, on \(\{ \nu \leq t_0 \} \), \(\mathbb{E}[D(\tau_{M+m})^2 \mid F_{t_0}] \leq 2\varepsilon^2 e^{-cm} \). Also, similarly to (2.19),

\[\max_{t \geq \tau_M} \| \mu'(t) - \mu'(\tau_M) \|^2 \leq \sum_{t \geq \tau_M} \| \mu'(t) - \mu'(t - 1) \|^2 \leq \sum_{m \geq 1} (D(\tau_{M+m}) + D(\tau_{M+m-1}))^2. \]

Taking expectations and using the Cauchy–Schwarz inequality, we obtain, on \(\{ \nu \leq t_0 \} \),

\[\mathbb{E} \left[\max_{t \geq t_0} \| \mu'(t) - \mu'(t_0) \|^2 \mid F_{t_0} \right] = \mathbb{E} \left[\max_{t \geq \tau_M} \| \mu'(t) - \mu'(\tau_M) \|^2 \mid F_{t_0} \right] \leq \varepsilon^2 e^c \sum_{m \geq 1} e^{-cm}, \]

a constant times \(\varepsilon^2 \). Jensen’s inequality now gives the result, with \(C^2 = \frac{8}{1-e^{-c}} \).

Proof of Theorem 1.1. Again let \(\mu'(t) := \mu_{N-1}(X(t)) \). We have from Lemma 2.6 that \(\mu'(t) \to \xi_N \) a.s. Now, for any \(j \in \{ 1, \ldots, N - 1 \} \), by the triangle inequality,

\[\| X(j)(t) - \xi_N \| \leq \| X(j)(t) - \mu'(t) \| + \| \mu'(t) - \xi_N \| \leq D(t) + \| \mu'(t) - \xi_N \|, \]

which tends to 0 a.s. as \(t \to \infty \), since \(D(t) \to 0 \) a.s. by Lemma 2.5. This establishes the first statement in (1.1). Moreover, by (2.17), \(X_N(t+1) \neq U_{t+1} \) only if \(A_{t+1} \) occurs. On \(A_{t+1} \), \(X_N(t+1) \) is one of the points of \(X_N(t) \), and so \(\| X_N(t+1) - \mu'(t) \| \leq D(t) \). In addition, on \(A_{t+1} \), we have \(\| U_{t+1} - \mu'(t) \| \leq 3D(t) \). So by the triangle inequality,

\[\| X_N(t+1) - U_{t+1} \| \leq 4D(t)1(A_{t+1}), \]

which tends to 0 a.s., again by Lemma 2.5. This gives the final part of (1.1).

3. The limit distribution in one dimension

3.1. Overview and simulations

Throughout this section we restrict attention to \(d = 1 \). Of interest is the distribution of the limit \(\xi_N \) in (1.1), and its behaviour as \(N \to \infty \). Simulations suggest that \(\xi_N \) is highly dependent on the initial configuration: Figure 1 shows histogram estimates for \(\xi_N \) from repeated simulations with a deterministic initial condition. In more detail, \(10^8 \)
runs of each simulation were performed, each starting from the same initial condition; each run was terminated when \(D(t) < 0.0001 \) for the first time, and the value of \(\mu_{N-1}(X_N'(t)) \) was output as an approximation to \(\xi_N \) (cf Theorem 1.1). Note that, by (2.10), in the simulations one may take the new points not \(U[0,1] \) but uniform on a typically much smaller interval, which greatly increases the rate of updates to the core configuration.

![Normalized histograms](image)

Figure 1: Normalized histograms each based on \(10^8 \) simulations, with \(N = 3 \) and initial points \(\frac{1}{4}, \frac{1}{2}, \frac{3}{4} \) (left) and \(N = 7 \) and initial points \(\frac{k}{8}, k \in \{1, \ldots, 7\} \) (right).

Figure 2 shows sample results obtained with an initial condition of \(N \) i.i.d. \(U[0,1] \) random points. Now the histograms appear much simpler, although, of course, they can be viewed as mixtures of complicated multi-modal histograms similar to those in Figure 1. In the uniform case, it is natural to ask whether \(\xi_N \) converge in distribution to some limit distribution as \(N \to \infty \).

The form of the histograms in Figure 2 might suggest a Beta distribution (this is one sense in which the randomized beauty contest is “reminiscent of a Pólya urn” [4, p. 390]). An ad-hoc Kolmogorov–Smirnov analysis (see Table 3.1) suggests that the distributions are indeed ‘close’ to Beta distributions, but different enough for the match to be unconvincing. Simulations for large \(N \) are computationally intensive. We remark that it is not unusual for Beta or ‘approximate Beta’ distributions to appear as limits of schemes that proceed via iterated procedures on intervals: see for instance [6] and references therein.

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\beta)</th>
<th>(\kappa(\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.256</td>
<td>0.0010</td>
</tr>
<tr>
<td>10</td>
<td>1.392</td>
<td>0.0016</td>
</tr>
<tr>
<td>50</td>
<td>1.509</td>
<td>0.0018</td>
</tr>
<tr>
<td>100</td>
<td>1.539</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

Table 1: \(\kappa(\beta) \) is the Kolmogorov–Smirnov distance between a Beta(\(\beta, \beta \)) distribution and the empirical distribution from the samples of size \(10^8 \) plotted in Figure 2, minimized over \(\beta \) in each case.
In the rest of this section we study ξ_N and its distribution. Our results on the limit distribution, in particular, leave several interesting open problems, including a precise description of the phenomena displayed by the simulations reported above. In Section 3.2 we give an alternative (one might say ‘phenomenological’) characterization of the limit ξ_N, and contrast this with an appropriate rank-driven process in the sense of [4]. In Section 3.3 we show that the distribution of ξ_N is fully supported on $(0, 1)$ and assigns positive probability to any proper interval, using a construction permitting transformations of configurations. Finally, Section 3.4 is devoted to the case $N = 3$, for which some explicit computations for the distribution of ξ_N (in particular, its moments) are carried out.

3.2. A characterization of the limit

Let

$$\pi_N(t) := \frac{1}{t} \# \{ s \in \{1, 2, \ldots, t\} : \mathcal{X}_N^*(s) < \mu_N(\mathcal{X}_N(s)) \},$$

Figure 2: Normalized histograms for 10^8 simulations with random i.i.d. uniform initial conditions, with (top row) $N = 3, 10$ and (bottom row) $N = 50, 100$.

Randomized Keynesian beauty contest
the proportion of times up to time t for which the extreme point was the leftmost point (as opposed to the rightmost). The next result shows that $\pi_N(t)$ converges to the (random) limit ξ_N given by Theorem 1.1; we give the proof after some additional remarks.

Proposition 3.1. Let $d = 1$ and $N \geq 3$. Then $\lim_{t \to \infty} \pi_N(t) = \xi_N$ a.s.

It is instructive to contrast this behaviour with a suitable rank-driven process (cf [4]). Namely, fix a parameter $\pi \in (0, 1)$. Take N points in $[0, 1]$, and at each step in discrete time replace either the leftmost point (with probability π) or else the rightmost point (probability $1 - \pi$), independently at each step; inserted points are independent $U[0, 1]$ variables. For this process, results of [4] show that the marginal distribution of a typical point converges (as $t \to \infty$ and then $N \to \infty$) to a unit point mass at π (cf Remark 3.2 in [4]).

This leads us to one sense in which the randomized beauty contest is, to a limited extent, “reminiscent of a Pólya urn” [4, p. 390]. Recall that a Pólya urn consists of an increasing number of balls, each of which is either red or blue; at each step in discrete time, a ball is drawn uniformly at random from the urn and put back into the urn together with an extra ball of the same colour. The stochastic process of interest is the proportion of red balls, say π, and then $N \to \infty$ to a unit point mass at π (cf Remark 3.2 in [4]).

Proof of Proposition 3.1. Given $\tau_0, \tau_1, \tau_2, \ldots$, $\xi_N = \lim_{n \to \infty} \mu_{N-1}(X_N^{\tau_n}(\tau_n))$ is independent of U_t, $t \notin \{\tau_0, \tau_1, \ldots\}$, since, by (2.17), any such U_t is replaced at time $t + 1$. Let $\varepsilon > 0$. By Theorem 1.1, there exists a random $T < \infty$ a.s. for which max$_{1 \leq n \leq N-1} |\xi_N - X(i)(t)| \leq \varepsilon$ for all $t \geq T$.

Since $\mu_N(X_N(t + 1)) = \frac{N - 1}{N} \mu_{N-1}(X_N(t)) + \frac{1}{N} U_{t+1}$, we have that for $t \geq T$, using the triangle inequality, for any $i \in \{1, \ldots, N - 1\}$,

$$|\mu_N(X_N(t + 1)) - X(i)(t)| \leq \varepsilon + |\mu_N(X_N(t + 1)) - \xi_N|$$

$$\leq \varepsilon + \frac{N - 1}{N} |\mu_{N-1}(X_N(t)) - \xi_N| + \frac{1}{N} |U_{t+1} - \xi_N|.$$

Hence, for $t \geq T$,

$$\max_{1 \leq i \leq N-1} |X(i)(t) - \mu_N(X_N(t + 1))| \leq \frac{1}{N} |\xi_N - U_{t+1}| + 2\varepsilon. \quad (3.1)$$

On the other hand, for $t \geq T$, $\mu_N(X_N(t + 1)) \geq \frac{N - 1}{N} (\xi_N - \varepsilon) + \frac{1}{N} U_{t+1}$, so that for $i \in \{1, \ldots, N - 1\}$,

$$\mu_N(X_N(t + 1)) - U_{t+1} \geq \frac{N - 1}{N} (\xi_N - U_{t+1} - \varepsilon). \quad (3.2)$$
Suppose that \(U_{t+1} < \xi_N - K\varepsilon \) for some \(K \in (1, \infty) \). Then, from (3.1) and (3.2),

\[
|\mu_N(\mathcal{X}_N(t+1)) - U_{t+1}| - \max_{1 \leq i \leq N-1} |X_i(t) - \mu_N(\mathcal{X}_N(t+1))| \\
\geq \frac{N-2}{N}(\xi_N - U_{t+1}) - \frac{3N-1}{N}\varepsilon \\
> \frac{\varepsilon}{N}((N-2)K - 3N + 1).
\]

This last expression is positive provided \(K \geq \frac{3N-1}{N-2} \), which is the case for all \(N \geq 3 \) with the choice \(K = 8 \), say. Hence, with this choice of \(K \), \(\{U_{t+1} < \xi_N - 8\varepsilon\} \) implies that \(U_{t+1} \) is farther from \(\mu_N(\mathcal{X}_N(t + 1)) \) than is any of the points left over from \(\mathcal{X}_N(t) \). Write \(L_t := \{U_t < \xi_N - 8\varepsilon\} \). Then we have shown that, for \(t \geq T \), the event \(L_t \) implies that \(U_t = \mathcal{X}_N(t) \), and, moreover, \(U_t < \mu_N(\mathcal{X}_N(t)) \). Hence, for \(t \geq T \),

\[
\pi_N(t) \geq \frac{1}{t} \sum_{s=1}^{t} 1(L_s) \geq \frac{1}{t} \sum_{s \in \{\tau, \tau_1, \ldots\}} 1(L_s).
\]

Given \(\tau_0, \tau_1, \ldots, U_s \), \(s \notin \{\tau_0, \tau_1, \ldots\} \) are independent of \(T \) and \(\xi_N \). For such an \(s \), \(U_s \) is uniform on \(\sigma := [0, 1] \setminus B(\mu_{N-1}(\mathcal{X}_N(s));3D(s)) \), and, for \(s \geq T \), \(D(s) \leq 2\varepsilon \) so that \(L_s \geq 0, \max(\xi_N - 8\varepsilon, 0)] \cup \min(\xi_N + 8\varepsilon, 1], 1] \). Hence, given \(s \notin \{\tau_0, \tau_1, \ldots\} \) and \(s \geq T \),

\[
P[L_s] = P[U_s < \xi_N - 8\varepsilon \mid U_s \in I_s] \geq \xi_N - 8\varepsilon.
\]

Hence, considering separately the cases \(\xi_N > 9\varepsilon \) and \(\xi_N \leq 9\varepsilon \), the strong law of large numbers implies that

\[
\frac{1}{t} \sum_{s \notin \{\tau_0, \tau_1, \ldots\}} 1(L_s) \geq \xi_N - 9\varepsilon,
\]

for all \(t \) sufficiently large; here we have used the fact that \(t - T \to \infty \) a.s. as \(t \to \infty \) and \#\(n \in \mathbb{Z}_+ : \tau_n \leq t\} \to t \) a.s., which follows from (2.12) and Lemma 2.4 with a standard concentration argument using e.g. the Azuma–Hoeffding inequality. Since \(\varepsilon > 0 \) was arbitrary, it follows that \(\lim \inf_{t \to \infty} t^{-1}\pi_N(t) \geq \xi_N \) a.s. The symmetrical argument considering events of the form \(R_t := \{U_t > \xi_N + 8\varepsilon\} \) shows that \(\lim \inf_{t \to \infty} (1 - t^{-1}\pi_N(t)) \geq 1 - \xi_N \) a.s., so \(\lim \sup_{t \to \infty} t^{-1}\pi_N(t) \leq \xi_N \) a.s. Combining the two bounds gives the result.

3.3. The limit has full support

In this section, we prove that \(\xi_N \) is fully supported on \((0,1)\) in the sense that \(\text{ess inf} \xi_N = 0 \) and \(\xi_N \) assigns positive probability to any non-null interval. Let

\[
m_N(0) := \min\{\|X_i(0) - X_j(0)\| : i, j \in \{0, 1, \ldots, N + 1\}, i \neq j\},
\]

where we use the conventions \(X_0(0) := 0 \) and \(X_{N+1}(0) := 1 \). For \(\rho > 0 \) let \(S_\rho \) denote the \(\mathcal{F}_t \)-event \(S_\rho := \{m_N(0) \geq \rho\} \) that no point of \(\mathcal{X}_N(0) \) is closer than distance \(\rho \) to any other point of \(\mathcal{X}_N(0) \) or to either of the ends of the unit interval.
Proposition 3.2. Let $d = 1$ and $N \geq 3$. Let $\rho \in (0, 1)$. For any non-null interval subset I of $[0, 1]$, there exists $\delta > 0$ (depending on N, I, and ρ) for which

$$
P[\xi_N \in I \mid \mathcal{X}_N(0)] \geq \delta 1(S_\rho), \ a.s.$$ \hspace{1cm} (3.4)

In particular, in the case where $\mathcal{X}_N(0)$ consists of N independent $U[0, 1]$ points, $P[\xi_N \in I > 0$ for any non-null interval $I \subset [0, 1]$.

We suspect, but have not been able to prove, that ξ_N has a density f_N with respect to Lebesgue measure, i.e., ξ_N is absolutely continuous in the sense that for every $\varepsilon > 0$ there exists $\delta > 0$ such that $P[\xi_N \in A] < \varepsilon$ for every A with Lebesgue measure less than δ. Note that $P[\xi_N \in A \mid \mathcal{X}_N(0)]$ may be 0 if $\mathcal{X}_N(0)$ contains non-distinct points:

- e.g. if $N \geq 3$ and $\mathcal{X}_N(0) = (x, \ldots, x, y)$, then $\mathcal{X}_N'(t) = (x, \ldots, x)$ for all t.

For $a \in [0, 1]$, $\varepsilon > 0$, and $t \in \mathbb{N}$, define the event

$$E_{a,\varepsilon}(t) := \bigcap_{i=1}^{N} \{|X_i(t) - a| < \varepsilon\}.$$

The main new ingredient needed to obtain Proposition 3.2 is the following result.

Lemma 3.1. Let $N \geq 3$. For any $\rho \in (0, 1)$ and $\varepsilon > 0$ there exist $t_0 \in \mathbb{N}$ and $\delta_0 > 0$ (depending on N, ρ, and ε) for which, for all $a \in [0, 1]$,

$$P[E_{a,\varepsilon}(t_0) \mid \mathcal{X}_N(0)] > \delta_0 1(S_\rho), \ a.s.$$

Proof. Fix $a \in [0, 1]$. Let $\rho \in (0, 1)$ and $\varepsilon > 0$. It suffices to suppose that $\varepsilon \in (0, \rho)$, since $E_{a,\varepsilon}(t) \subseteq E_{a,\varepsilon'}(t)$ for $\varepsilon' > \varepsilon$. Suppose that S_ρ occurs, so that $m_N(0) \geq \rho$ with $m_N(0)$ defined at (3.3). For ease of notation we list the points of $\mathcal{X}_N(0)$ in increasing order as $0 < X_1 < X_2 < \cdots < X_N < 1$. Let $M = |N/2|.

Let $\nu = \varepsilon/N^2$. The following argument shows how one can arrive at a configuration at a finite (deterministic) time t_0 where all of $X_1(t_0), \ldots, X_N(t_0)$ lie inside $(a - \varepsilon, a + \varepsilon)$ with a positive (though possibly very small) probability.

Let us call the points which are present at time 0 old points; the points which will gradually replace this set will be called new points. We will first describe an event by which all the old points are removed and replaced by new points arranged approximately equidistantly in the interval $[X_M, X_{M+1}]$, and then we will describe an event by which such a configuration can migrate to the target interval.

Step 1. Starting from time 0, iterate the following procedure until a new point becomes an extreme point. The construction is such that at each step, the extreme point is one of the old points, either at the extreme left or right of the configuration. At each step, the extreme old point is removed and replaced by a new $U[0, 1]$ point to form the configuration at the next time unit. We describe an event of positive probability by requiring the successive new arrivals to fall in particular intervals, as follows. The first old point removed from the right is replaced by a new point in $(X_M + \nu, X_M + \nu + \delta)$, where $\delta \in (0, \nu)$ will be specified later. Subsequently, the ith point $(i \geq 2)$ removed from the right is replaced by a new point in $(X_M + i\nu, X_M + i\nu + \delta)$. We call this subset of new points the accumulation on the left. On the other hand, the ith extreme point removed from the left $(i \in \mathbb{N})$ is replaced by a new point in $(X_{M+1} - i\nu, X_{M+1} - i\nu + \delta)$. This second subset of new points will be called the accumulation on the right.
During the first M steps of this procedure, the new points are necessarily internal points of the configuration and so are never removed. Therefore, there will be a time $t_1 \in [M, N]$ at which, for the first time, one of the new points becomes either the leftmost or rightmost point of $X_N(t_1)$; suppose that it is the rightmost, since the argument in the other case is analogous. If at time t_1 the accumulation on the right is non-empty, we continue to perform the procedure described in Step 1, but now allowing ourselves to remove new points from the accumulation on the right. So we continue putting extra points on the accumulation on the left whenever the rightmost point is removed, and similarly putting extra points to the accumulation on the right whenever the leftmost point is removed, as described for Step 1. Eventually we will have either (a) a configuration where all the new points of the left or the right accumulation are completely removed, and there are still some of the old points left, or (b) a configuration where all old points are removed. The next step we describe separately for these two possibilities.

Step 2(a). Without loss of generality, suppose that the accumulation on the right is empty, so the configuration consists of k points of the left accumulation and $N - k$ old points remaining to the left of X_M (including X_M itself). Note that Step 1 produces at least M new points, so $M \leq k \leq N - 1$, since by assumption we have at least one old point remaining. Let us now denote the points of the configuration $x_1 < x_2 < \cdots < x_N$ so that $x_{N-k} = X_M$, and by the construction in Step 1, $x_{N-k+i} \in (X_M + i \nu, X_M + i \nu + \delta)$ for $i = 1, 2, \ldots, k$. Provided that $k \leq N - 2$, so that there are at least 2 old points, we will show that x_1 is necessarily the extreme point of the configuration. Indeed, writing $\mu = \mu_N(x_1, \ldots, x_N)$, using the fact that $x_{N-k+i} \geq x_{N-k} + i \nu$ for $1 \leq i \leq k$ and $x_N \leq x_{N-k} + k \nu + \delta$, we have

$$
\frac{\mu - x_1 + x_N}{2} \geq \frac{x_1 + \cdots + x_{N-k} + kx_{N-k} + \frac{1}{2}k\nu(k+1)}{N} - \frac{x_1 + x_{N-k} + \nu k + \delta}{2} = \frac{1}{2N} (2x_1 + \cdots + 2x_{N-k} + (2k-N)x_{N-k} - Nx_1 + \nu k(k+1-N) - \delta N).
$$

The old points all have separation at least ρ, so for $1 \leq i \leq N - k$, $x_i \geq x_1 + (i - 1)\rho$, and hence

$$
2x_1 + \cdots + 2x_{N-k} + (2k-N)x_{N-k} \geq Nx_1 + \rho(N-k-1)(N-k) + \rho(2k-N)(N-k-1).
$$

It follows, after simplification, that

$$
\frac{\mu - x_1 + x_N}{2} \geq \frac{1}{2N} \frac{k(N-k-1)(\rho - \nu) - \delta N}{(N-2)(\rho - \nu) - \delta N},
$$

provided $1 \leq k \leq N - 2$. By choice of ν, we have $\nu \leq \rho/9$ and it follows that the last displayed expression is positive provided δ is small enough compared to ρ ($\delta < \rho/4$, say). Hence $|x_1 - \mu| > |x_N - \mu|$. Thus next we remove x_1. We replace it similarly to the procedure in Step 1, but now building up the accumulation on the left. We can thus iterate this step, removing old points from the left and building up the accumulation on the left, while keeping the accumulation on the right empty, until we get just one old point remaining (i.e. until $k = N - 1$); this last old point will be X_M. At this stage,
after a finite number of steps, we end up with a configuration where the set of points $x_1 < x_2 < \cdots < x_N$ satisfies $x_i \in [X_M + (i - 1)\nu, X_M + (i - 1)\nu + \delta]$, $i = 1, 2, \ldots, N$.

Step 2(b). Suppose that the configuration is such that all old points have been removed but both left and right accumulations are non-empty. Repeating the procedure of Step 1, replacing rightmost points by building the left accumulation and leftmost points by building the right accumulation, we will also, in a finite number of steps, obtain a set points x_i such that $x_i \in [b + (i - 1)\nu, b + (i - 1)\nu + \delta]$, $i = 1, 2, \ldots, N$, for some $b \in [0, 1]$.

Step 3. Now we will show how one can get to the situation where all points lie inside the interval $(a - \varepsilon, a + \varepsilon)$ starting from any configuration in which

$$x_i \in [b + i\nu, b + i\nu + \delta], \quad i = 1, 2, \ldots, N - 1,$$

(3.5)

where $b \in [0, 1]$ and $x_1 < \cdots < x_{N-1}$ are the core points of the configuration (i.e., with the extreme point removed). We have shown in Step 1 and Step 2 how we can achieve such a configuration in a finite time with a positive probability. Suppose that $a > b$; the argument for the other case is entirely analogous. We describe an event of positive probability by which the entire configuration can be moved to the right.

Having just removed the extreme point, we stipulate that the new point y_1 belong to $(b + N\nu - 6\delta, b + N\nu - 5\delta)$, so $y_1 > x_{N-1}$ is the new rightmost point provided $\delta < \nu/7$. Then to ensure that x_1, and not y_1, is the most extreme point we need

$$\frac{x_1 + y_1}{2} - \left[b + \nu \frac{N + 1}{2} \right] < \frac{x_1 + \cdots + x_{N-1} + y_1}{N} - \left[b + \nu \frac{N + 1}{2} \right].$$

The left-hand side of the last inequality is less than -2δ while the right-hand side is more than $\frac{5\delta}{N}$, so the inequality is indeed satisfied provided $N \geq 3$.

![Figure 3: Schematic of a configuration at the start of Step 3. The disks represent the points $x_1, x_2, \ldots, x_{N-1}$ and, on the extreme right, the new point y_1.](image)

Hence at the next step x_1 is removed. Our new collection of core points is $x_2 < \cdots < x_{N-1} < y_1$. We stipulate that the next new point y_2 arrive in $(b + (N + 1)\nu - 18\delta, b + (N + 1)\nu - 17\delta)$. So again, for δ small enough ($\delta < \nu/13$ suffices), $y_2 > y_1$ and the newly added point (y_1) becomes the rightmost point in the configuration. Again, to ensure that the leftmost point (x_2) is now the extreme one, we require

$$\frac{x_2 + y_2}{2} - \left[b + \nu \frac{N + 3}{2} \right] < \frac{x_2 + \cdots + x_{N-1} + y_1 + y_2}{N} - \left[b + \nu \frac{N + 3}{2} \right].$$

The left-hand side of the last inequality is less than -8δ, while the right-hand side is more than $-24\delta/N$, and so the displayed inequality is true provided $N \geq 3$.

We will repeat this process until we remove the rightmost core point present at the start of Step 3, namely x_{N-1}, located in $[b + (N - 1)\nu, b + (N - 1)\nu + \delta]$. We will
Lemma 2.6 and B interval. We can (and do) choose a but not on j point x ∈ points x remain such that δ > ε, a ∈ ρ, and ε but independently of a, and each of which required a U[0, 1] variable to be placed in a small interval (of width less than 3−Nν) and so has positive probability, which can be bounded below in terms of N, ρ, and ε. So overall the desired transformation of the configuration has positive probability depending on N, ρ, and ε, but not on a. This completes the proof of the lemma.

Proof of Proposition 3.2. Write μ′(t) := μ_{N−1}(A′_{N}(t)). Let I ⊆ [0, 1] be a non-null interval. We can (and do) choose a ∈ (0, 1) and ε′ > 0 such that I′ := [a−ε′, a+ε′] ⊆ I. Also take I′′ := [a−ε, a+ε] ⊆ I′ for ε = (4BC)^{-1}N^{−1/2}ε′, where C is the constant in Lemma 2.6 and B ≥ 1 is an absolute constant chosen so that ε < ε′/4 for all N ≥ 3. Fix ρ ∈ (0, 1). It follows from Lemma 3.1 that, for some δ_0 > 0 and t_0 ∈ N, depending on ε,

\[P\{μ′(t_0) ∈ I′′ \cap D(t_0) ≤ 2ε \} | A_N(0) \] ≥ δ_0 1(S_ρ).
By Lemma 2.2, we have that $D(t_0) \leq 2\varepsilon$ implies that $F(t_0) \leq 2N\varepsilon^2 < (\varepsilon/(2BC))^2$, so that $t_0 \geq \nu\varepsilon/(2BC)$, where ν is as defined just before Lemma 2.6. Applying Lemma 2.6 with this choice of t_0 and with the ε there equal to $\varepsilon/(2BC)$, we obtain, by Markov’s inequality,

$$
P \left(\max_{t \geq t_0} |\mu'(t) - \mu'(t_0)| \leq 3\varepsilon'/4 \mid F_{t_0} \right) \geq 1/3, \ a.s.
$$

It follows that, given $X_N(0)$, the event

$$
\{\mu'(t_0) \in I'' \} \cap \{D(t_0) \leq 2\varepsilon \} \cap \{\{\xi_N - \mu'(t_0)\} \leq 3\varepsilon'/4\}
$$

has probability at least $(\delta_0/3)1(S_\rho)$, and on this event we have $|\xi_N - a| \leq \varepsilon + (3\varepsilon'/4) < \varepsilon'$, so $\xi_N \in I$. Hence (3.4) follows.

For the final statement in the proposition, suppose that $X_N(0)$ consists of independent $U[0,1]$ points. In this case $m_N(0)$ defined at (3.3) is the minimal spacing in the induced partition of $[0,1]$ into $N+1$ segments, which has the same distribution as $\frac{\rho}{N+1}$ times a single spacing, and in particular has density $f(x) = N(N+1)(1-(N+1)x)^{-1}$ for $x \in \left[0,\frac{1}{N+1}\right]$ (cf Section A). Hence for any $\rho \in \left[0,\frac{1}{N+1}\right]$, we have $P[S_\rho] = \left(1-(N+1)\rho\right)^N$, which is positive for $\rho = \frac{1}{N+1}$, say. Thus taking expectations in (3.4) yields the final statement in the proposition.

3.4. Explicit calculations for $N = 3$

For this section we take $N = 3$, the smallest nontrivial example. In this case we can perform some explicit calculations to obtain information about the distribution of ξ_3. In fact, we work with a slightly modified version of the model, avoiding certain ‘boundary effects’, to ease computation. Specifically, we do not use $U[0,1]$ replacements but, given $X_3(t)$, we take U_{t+1} to be uniform on the interval $[\min X_3'(t) - D(t), \max X_3'(t) + D(t)]$. If this interval is contained in $[0,1]$ for all t, this modification would have no effect on the value of ξ_3 realized (only speeding up the convergence), but the fact that now U_{t+1} might be outside $[0,1]$ does change the model.

For this modified model, the argument for Theorem 1.1 follows through with minor changes, although we essentially reprove the conclusion of Theorem 1.1 in this case when we prove the following result, which gives an explicit description of the limit distribution. Here and subsequently ‘$\overset{a.s.}{=} \equiv$’ denotes equality in distribution.

Proposition 3.3. Let $d = 1$ and $N = 3$ and work with the modified version of the process just described. Let $X_3(0)$ consist of 3 distinct points in $[0,1]$. Write $\mu := \mu_2(X_3'(0))$ and $D := D_2(X_3'(0))$. There exists a random $\xi_3 := \xi_3(X_3(0)) \in \mathbb{R}$ such that $X_3'(t) \overset{a.s.}{\rightarrow} (\xi_3, \xi_3)$ as $t \rightarrow \infty$. The distribution of ξ_3 can be characterized via $\xi_3 \overset{d}{=} \mu + DL$, where L is independent of (μ, D), $L \overset{d}{=} -L$, and the distribution of L is determined by the distributional solution to the fixed-point equation

$$
L \overset{d}{=} \begin{cases}
\frac{1+L}{2} + UL & \text{with probability } \frac{1}{4} \\
\frac{2-L}{4} + \frac{UL}{2} & \text{with probability } \frac{1}{4} \\
\frac{2-L}{4} + \frac{UL}{2} & \text{with probability } \frac{1}{4} \\
\frac{1+L}{2} + UL & \text{with probability } \frac{1}{4}
\end{cases}
$$

(3.6)
where $\mathbb{E}[|L|^k] < \infty$ for all k, and $U \sim U[0,1]$. Writing $\theta_k := \mathbb{E}[L^k]$, we have $\theta_k = 0$ for odd k, and $\theta_2 = \frac{7}{12}, \theta_4 = \frac{377}{368},$ and $\theta_6 = \frac{76694}{22080}$. In particular,

$$
\mathbb{E}[\xi_3] = \mathbb{E}[\mu], \quad \mathbb{E}[\xi^2_3] = \mathbb{E}[\mu^2] + \frac{7}{12}\mathbb{E}[D^2], \quad \text{and} \quad \mathbb{E}[\xi^3_3] = \mathbb{E}[\mu^3] + \frac{7}{4}\mathbb{E}[\mu D^2].
$$

(3.7)

In the case where $X_3(0)$ contains 3 independent $U[0,1]$ points, $\mathbb{E}[\xi^k_3] = \frac{1}{2}, \frac{1}{3}, \frac{1}{7}$ for $k = 1, 2, 3$ respectively. If $X_3(0) = (\frac{1}{2}, \frac{1}{3}, \frac{1}{7})$, then $\mathbb{E}[\xi^k_3] = \frac{1}{2}, \frac{29}{96}, \frac{113}{648}$ for $k = 1, 2, 3, 4$.

We give the proof of Proposition 3.3 at the end of this section. First we state one consequence of the fixed-point representation (3.6).

Proposition 3.4. L given by (3.6) has an absolutely continuous distribution.

Proof. It follows from (3.6) that

$$
\mathbb{P}[L = \frac{1}{2}] = \frac{1}{3}\mathbb{P}[U \left(\frac{L - \frac{1}{2}}{\frac{1}{2}}\right) = 1] + \frac{1}{3}\mathbb{P}[U \left(\frac{L + \frac{1}{2}}{\frac{1}{2}}\right) = 2] \\
\quad + \frac{1}{3}\mathbb{P}[U \left(\frac{L - \frac{1}{2}}{\frac{1}{2}}\right) = 0] + \frac{1}{3}\mathbb{P}[U \left(\frac{L + \frac{1}{2}}{\frac{1}{2}}\right) = 0].
$$

The first two terms on the right-hand side of the last display are zero, by an application of the first part of Lemma B.1 with $X = U$, $Y = L \pm \frac{1}{2}$, and $a = 1, 2$. Also, since $U > 0$ a.s., $\mathbb{P}[U(L + \frac{1}{2}) = 0] = \mathbb{P}[L = \pm \frac{1}{2}]$, and, by symmetry, $\mathbb{P}[L = 1/2] = \mathbb{P}[L = -1/2]$. Thus we obtain

$$
\mathbb{P}[L = \frac{1}{2}] = \frac{1}{3}\mathbb{P}[L = \frac{1}{2}] + \frac{1}{3}\mathbb{P}[L = -\frac{1}{2}] = \frac{1}{3}\mathbb{P}[L = \frac{1}{2}].
$$

Hence $\mathbb{P}[L = 1/2] = \mathbb{P}[L = -1/2] = 0$.

Each term on the right-hand side of (3.6) is of the form $\pm \frac{1}{2} + V(L \pm \frac{1}{2})$ where V is an absolutely continuous random variable, independent of L (namely U or $U/2$). The final statement in Lemma B.1 with the fact that $\mathbb{P}[L = \pm 1/2] = 0$ shows that each such term is absolutely continuous. Finally, Lemma B.2 completes the proof.

In principle, the characterization (3.6) can be used to recursively determine all the moments $\mathbb{E}[L^k] = \theta_k$, and the moments of ξ_3 may then be obtained by expanding $\mathbb{E}[\xi^k_3] = \mathbb{E}[(\mu + DL)^k]$. However, the calculations soon become cumbersome, particularly as μ and D are, typically, not independent: we give some distributional properties of (μ, D) in the case of a uniform random initial condition in Appendix A.

Before giving the proof of Proposition 3.3, we comment on some simulations. Figure 4 shows histogram estimates for the distribution of ξ_3 for two initial distributions (one deterministic and the other uniform random), and Table 2 reports corresponding moment estimates, which may be compared to the theoretical values given in Proposition 3.3. In the uniform case, we only computed the first 3 moments analytically, namely, $\frac{1}{2}, \frac{1}{3}, \frac{1}{7}$ as quoted in Proposition 3.3; it is a curiosity that these coincide with the first 3 moments of the $U[0,1]$ distribution.

Proof of Proposition 3.3. Let $\mu'(t) := \frac{1}{2}(X_{(1)}(t) + X_{(2)}(t))$ and $D(t) := |X_{(1)}(t) - X_{(2)}(t)|$ denote the mean and diameter of the core configuration, repeating our notation from above.

Consider separately the events that U_{t+1} falls in each of the four intervals

$$
[min X_{\ell}'(t) - D(t), min X_{\ell}'(t)], \quad [min X_{\ell}'(t), min X_{\ell}'(t) + \frac{1}{2}D(t)], \\
[min X_{\ell}'(t) + \frac{1}{2}D(t), max X_{\ell}'(t)], \quad [max X_{\ell}'(t), max X_{\ell}'(t) + D(t)].
$$
which have probabilities $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{6}$, respectively. Given $\mu(t), D(t)$, we see, for V_{t+1} a $U[0,1]$ variable, independent of $\mu(t), D(t)$,

\[(\mu(t), D(t+1)) = \begin{cases}
(\mu(t) - \frac{1+Y_{t+1}}{2}D(t), V_{t+1}D(t)) & \text{with prob. } \frac{1}{3} \\
(\mu(t) - \frac{2+Y_{t+1}}{2}D(t), \frac{1}{2}V_{t+1}D(t)) & \text{with prob. } \frac{1}{3} \\
(\mu(t) + \frac{2+Y_{t+1}}{2}D(t), \frac{1}{2}V_{t+1}D(t)) & \text{with prob. } \frac{1}{3} \\
(\mu(t) + \frac{1+Y_{t+1}}{2}D(t), V_{t+1}D(t)) & \text{with prob. } \frac{1}{3} . \end{cases} \quad (3.8)\]

Writing $m_k(t) = E[D(t)^k | X_3(0)]$ we obtain from the second coordinates in (3.8)

\[m_k(t+1) = \frac{2}{3}E[V_{t+1}^k m_k(t)] + \frac{1}{3}2^{-k}E[V_{t+1}^k] m_k(t), \]

which implies that

\[m_k(t) = \left(\frac{1}{3(k+1)}(2+2^{-k}) \right)^t D(0)^k. \quad (3.9)\]

For example, $m_1(t) = (5/12)^t D(0)$ and $m_2(t) = (1/4)^t D(0)^2$.

Next we show that $\mu'(t)$ converges. From (3.8), we have that $|\mu'(t+1) - \mu'(t)| \leq D(t)$, a.s., so to show that $\mu'(t)$ converges, it suffices to show that $\sum_{t=0}^{\infty} D(t) < \infty$ a.s. But this can be seen from essentially the same argument as Lemma 2.5, or directly from the fact that the sum has nonnegative terms and $E \sum_{t=0}^{\infty} D(t) = \sum_{t=0}^{\infty} E[m_1(t)]$, which is finite. Hence $\mu'(t)$ converges a.s. to some limit, ξ_3 say. Extending this argument
little, we have from (3.8) that \(|\mu'(t+1)| \leq |\mu'(t)| + D(t)|, a.s., and \(D(t+1) \leq V_{t+1} D(t), a.s\). Hence for \(V_1, V_2, \ldots \) i.i.d. \(U[0,1]\) random variables, we have \(D(t) \leq V_1 \cdots V_t D(0)\) and

\[
|\mu'(t)| - |\mu'(0)| = \sum_{s=0}^{t-1} (|\mu'(s+1)| - |\mu'(s)|) \leq \left(1 + \sum_{s=1}^{\infty} \prod_{r=1}^{s} V_r\right) D(0) = (1 + Z) D(0).
\]

Here \(Z\) has the so-called Dickman distribution (see e.g. [13, §3]), which has finite moments of all orders. Hence \(E[|\mu'(t)|^p | \mathcal{X}_N(0)]\) is bounded independently of \(t\), so, for any \(p \geq 1\), \((\mu'(t))^p\) is uniformly integrable, and hence \(\lim_{t \to \infty} E[|\mu'(t)|^k | \mathcal{X}_3(0)] = E[|\xi_3| | \mathcal{X}_3(0)]\) for any \(k \in \mathbb{N}\).

We now want to compute the moments of \(\xi_3\); by the previous argument, we can first work with the moments of \(\mu'(t)\). Note that, from (3.8),

\[
E[(\mu'(t+1) - \mu'(t))^k | \mathcal{X}_3(0)]
= \frac{1 + (-1)^k}{3} D(t)^k E\left(\left[\frac{1 + V_{t+1}}{2}\right]^k\right) + \frac{1 + (-1)^k}{6} D(t)^k E\left(\left[\frac{1 + V_{t+1}}{4}\right]^k\right).
\]

using the fact that \(E[(1+V_{t+1})^k] = \frac{2^{k+1}-1}{k+1}\). In particular, \(E[(\mu'(t+1) - \mu'(t))^k | \mathcal{X}_3(t)] = 0\) for odd \(k\), so \(E[\mu'(t) | \mathcal{X}_3(0)] = \mu'(0)\), and hence \(E[\xi_3] = \lim_{t \to \infty} E[\mu'(t)] = E[\mu'(0)]\), giving the first statement in (3.7). In addition,

\[
E[(\mu'(t+1))^2 - (\mu'(t))^2 | \mathcal{X}_3(t)]
= 2 \mu'(t) E[\mu'(t+1) - \mu'(t) | \mathcal{X}_3(t)] + E[(\mu'(t+1) - \mu'(t))^2 | \mathcal{X}_3(t)]
= \frac{7}{16} D(t)^2.
\]

Hence

\[
E[(\mu'(t))^2 - (\mu'(0))^2 | \mathcal{X}_3(0)] = \sum_{s=0}^{t-1} E[(\mu'(s+1))^2 - (\mu'(s))^2 | \mathcal{X}_3(0)]
= \frac{7}{16} \sum_{s=0}^{t-1} m_2(s)
= \frac{7}{16} \sum_{s=0}^{\infty} 4^{-s} D(0)^2,
\]

as \(t \to \infty\), and the limit evaluates to \(\frac{7}{16} D(0)^2\), so that \(E[\xi_3^2] = \lim_{t \to \infty} E[(\mu'(t))^2] = E[(\mu'(0))^2] + \frac{7}{16} E[D(0)^2]\), giving the second statement in (3.7).

Write \(L(\mu'(0), D(0)) = \mathcal{X}_3(\mathcal{X}_3(0))\) emphasizing the dependence on the initial configuration through \(\mu'(0)\) and \(D(0)\). Then by translation and scaling properties

\[
L(\mu'(0), D(0)) \overset{D}{=} \mu'(0) + D(0) L(0, 1).
\]

(3.10)

So we work with \(L := L(0, 1)\) (which has the initial core points at \(\pm \frac{1}{2}\)).
We will derive a fixed-point equation for L. The argument is closely related to that for (3.8). Conditioning on the first replacement and using the transformation relation (3.10), we obtain (3.6). From (3.6) we see that $|L|$ is stochastically dominated by $1 + |U|$; iterating this, similarly to the argument involving the Dickman distribution above, we obtain that $|L|$ is stochastically dominated by $1 + |Z|$, where Z has the Dickman distribution, which is determined by its moments. Hence (3.6) determines a unique distribution for L with $E[L^k] < \infty$ for all k.

Writing (3.6) in functional form $L \overset{d}{=} \Psi(L)$, we see that by symmetry of the form of Ψ, also $\Psi(-L) \overset{d}{=} \Psi(-L)$, so $-L$ satisfies the same distributional fixed-point equation as does L. Hence $L \overset{d}{=} -L$.

Writing $\theta_k := E[L^k]$, which we know is finite, we get

$$
\theta_k = \frac{1}{3} \sum_{j=0}^{k} \binom{k}{j} (1 + (-1)^j) \theta_{k-j} E \left[\left(\frac{1 + U}{2} \right)^j U^{k-j} \right] + \frac{1}{6} \sum_{j=0}^{k} \binom{k}{j} (1 + (-1)^j) \theta_{k-j} E \left[\left(\frac{2 - U}{4} \right)^j \left(\frac{U}{2} \right)^{k-j} \right].
$$

Here

$$
E \left[\left(\frac{1 + U}{2} \right)^j U^{k-j} \right] = 2^{-j} \sum_{\ell=0}^{j} \binom{j}{\ell} \frac{1}{k - \ell + 1} =: a(k, j);
$$

$$
E \left[\left(\frac{2 - U}{4} \right)^j \left(\frac{U}{2} \right)^{k-j} \right] = 2^{-k} \sum_{\ell=0}^{j} \binom{j}{\ell} \frac{(-1/2)^{j-\ell}}{k - \ell + 1} =: b(k, j).
$$

So we get

$$
\theta_k = \frac{1}{3} \sum_{j \text{ even}, j \leq k} \binom{k}{j} \theta_{k-j} (2a(k, j) + b(k, j)).
$$

In particular, as can be seen either directly by symmetry or by an inductive argument using (3.11), $\theta_k = 0$ for odd k. For even k, one can use (3.11) recursively to find θ_k, obtaining for example the values quoted in the proposition.

Note that, by (3.10), $E[\xi_3^k] = E[(\mu'(0) + LD(0))^k]$, which, on expansion, gives the final statement in (3.7). The first 3 moments in the case of the uniform initial condition follow from (3.7) and Lemma A.1. For the initial condition with points $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, we have $D(0) = \frac{1}{4}$ and $\mu'(0) = \chi \frac{1}{4} + (1 - \chi) \frac{3}{4} = \frac{1}{2} - \frac{1}{4}$, where χ is the tie-breaker random variable taking values 0 or 1 each with probability $\frac{1}{2}$. It follows that $E[\mu'(0)^k] = \frac{1}{2} 8^{-k} (3^k + 5^k)$. Then, using (3.10),

$$
E[\xi_3^k] = E[(\mu'(0) + (L/4))^k] = \frac{1}{2} 8^{-k} \sum_{j=0}^{k} \binom{k}{j} 2^j \theta_j (3^{k-j} + 5^{k-j}).
$$

We can now compute the four moments given in the proposition.
Appendix A. Uniform spacings

In this appendix we collect some results about uniform spacings which allow us to obtain distributional results about our uniform initial configurations. The basic results that we build on here can be found in Section 4.2 of [14]; see the references therein for a fuller treatment of the theory of spacings.

Let \(U_1, U_2, \ldots, U_n \) be independent \(U[0,1] \) points. Denote the corresponding increasing order statistics \(U_{[1]} \leq \cdots \leq U_{[n]} \), and define the induced spacings by \(S_{n,i} := U_{[i]} - U_{[i-1]} \), \(i = 1, \ldots, n+1 \), with the conventions \(U_{[0]} := 0 \) and \(U_{[n+1]} := 1 \). We collect some basic facts about the \(S_{n,i} \). The spacings are exchangeable, and any \(n \)-vector, such as \((S_{n,1}, \ldots, S_{n,n})\), has the uniform density on the simplex \(\Delta_n := \{(x_1, \ldots, x_n) \in [0,1]^n : \sum_{i=1}^n x_i \leq 1\} \).

We need some joint properties of up to 3 spacings. Any 3 spacings have density
\[
f(x_1, x_2, x_3) = n(n-1)(n-2)(1-x_1-x_2-x_3)^{n-3} \] on \(\Delta_3 \). We note that
\[
\begin{align*}
\min\{S_{n,1}, S_{n,2}\} &\overset{d}{=} \frac{1}{2} S_{n,1}, \quad (n \geq 1), \\
(S_{n,1}, \min\{S_{n,2}, S_{n,3}\}) &\overset{d}{=} (S_{n,1}, \frac{1}{2} S_{n,2}), \quad (n \geq 2);
\end{align*}
\]
see for example Lemma 4.1 of [14]. Finally, for any \(n \geq 1 \) and \(\alpha \geq 0, \beta \geq 0 \),
\[
\mathbb{E}[S_{n,1}^\alpha S_{n,2}^\beta] = \frac{\Gamma(n+1)\Gamma(\alpha + 1)\Gamma(\beta + 1)}{\Gamma(n+1+\alpha+\beta)}.
\]
In particular \(\mathbb{E}[S_{n,1}^k] = \frac{n!k!}{(n+k)!} \) for \(k \in \mathbb{N} \).

Our main application in the present paper of the results on spacings collected above is to obtain the following result, which we use in Section 3.4.

Lemma A.1. Let \(d = 1 \) and \(N = 3 \). Suppose that \(\mathcal{X}_3(0) \) consists of 3 independent \(U[0,1] \) points. Then
\[
(\mu_2(\mathcal{X}_3'(0)), D_2(\mathcal{X}_3'(0))) \overset{d}{=} ((S_1 + \frac{1}{4} S_2) \zeta + (1 - S_1 - \frac{1}{4} S_2)(1 - \zeta), \frac{1}{2} S_2),
\]
where \(\zeta \) is a Bernoulli random variable with \(\mathbb{P}[\zeta = 0] = \mathbb{P}[\zeta = 1] = 1/2 \). For \(k \in \mathbb{Z}_+ \),
\[
\begin{align*}
\mathbb{E}[(D_2(\mathcal{X}_3'(0)))^k] &= 2^{-k} \frac{6}{(k+1)(k+2)(k+3)}, \\
\mathbb{E}[\mu_2(\mathcal{X}_3'(0))^k] &= \frac{4(3k - 5 + (3k+3 - 1)4^{-(k+1)})}{(k+1)(k+2)(k+3)}.
\end{align*}
\]
So, for example, the first 3 moments of \(D_2(\mathcal{X}_3'(0)) \) are \(\frac{1}{36}, \frac{1}{120}, \) and \(\frac{11}{1080} \), while the first 3 moments of \(\mu_2(\mathcal{X}_3'(0)) \) are \(\frac{1}{2}, \frac{5}{120}, \) and \(\frac{71}{7200} \). Finally, \(\mathbb{E}[\mu_2(\mathcal{X}_3'(0))(D_2(\mathcal{X}_3'(0)))^2] = \frac{1}{36} \).

Proof. The 3 points of \(\mathcal{X}_3(0) \) induce a partition of the interval \([0,1]\) into uniform spacings \(S_1, S_2, S_3, S_4 \), enumerated left to right (for this proof we suppress the first index in the notation above). For ease of notation, write \(D := D_2(\mathcal{X}_3'(0)) \) and \(\mu := \mu_2(\mathcal{X}_3'(0)) \) for the duration of this proof. Then \(D = \min\{S_2, S_3\} \overset{d}{=} S_1/2 \), by (A.1). Moreover, \(\min\{S_2, S_3\} \) is equally likely to be either \(S_2 \) or \(S_3 \). In the former case,
\[\mu = S_1 + \frac{1}{4} \min\{S_2, S_3\}, \text{ while in the latter case } \mu = 1 - S_4 - \frac{1}{4} \min\{S_2, S_3\}. \]

Using (A.2), we obtain the following characterization of the joint distribution of \(\mu \) and \(D \).

\[
\begin{aligned}
(\mu, D) &\overset{d}{=} \begin{cases}
(S_1 + \frac{1}{4}S_2, \frac{1}{2}S_2) & \text{with probability } \frac{1}{2}, \\
(1 - S_1 - \frac{1}{4}S_2, \frac{1}{2}S_2) & \text{with probability } \frac{1}{2}.
\end{cases}
\end{aligned}
\]

Hence \(\mathbb{E}[D_k] = 2^{-k} \mathbb{E}[S_k^k] \), which gives (A.4) by the \(n = 3, \alpha = k, \beta = 0 \) case of (A.3).

For the moments of \(\mu \), we have from (A.6) that \(\mu \) has the distribution of \(W := S_1 + \frac{1}{4}S_2 \) with probability \(\frac{1}{2} \) or \(1 - W \) with probability \(\frac{1}{2} \). So we have

\[
\begin{aligned}
\mathbb{E}[\mu^k] &= \frac{1}{2} \mathbb{E}[W^k] + \frac{1}{2} \mathbb{E}[(1 - W)^k] = \frac{1}{2} w_k + \frac{1}{2} \sum_{j=0}^{k} \binom{k}{j} (-1)^j w_j,
\end{aligned}
\]

where \(w_k := \mathbb{E}[W^k] \). Since \(w_k = \mathbb{E}[(S_1 + \frac{1}{4}S_2)^k] \), we compute

\[
\begin{aligned}
w_k &= \sum_{j=0}^{k} \binom{k}{j} 4^{-j} \mathbb{E}[S_1^{k-j}S_2^j] = \frac{k!}{(k+3)!} \sum_{j=0}^{k} 4^{-j},
\end{aligned}
\]

by the \(n = 3, \alpha = k-j, \beta = j \) case of (A.3). Thus we obtain

\[
w_k = \frac{8(1-4^{-(k+1)})}{(k+1)(k+2)(k+3)}.
\]

It follows that

\[
\mathbb{E}[\mu^k] = \frac{1}{2} w_k + 4 \sum_{j=0}^{k} \frac{k!}{(j+3)!(k-j)!} (-1)^j - \frac{k!}{(j+3)!(k-j)!} (1/4)^j.
\]

We deduce (A.5), after simplification, from the claim that, for any \(z \in \mathbb{R} \),

\[
S(z) := \sum_{j=0}^{k} \frac{k!}{(j+3)!(k-j)!} (-z)^j
\]

\[
= \frac{k!}{2z^3(k+3)!} \left[z^2(k+2)(k+3) + 2 - 2z(k+3) - 2(1-z)^{k+3} \right].
\]

(A.7)

Thus it remains to verify (A.7). To this end, note that

\[
S(z) = \frac{k!}{(k+3)!} \sum_{j=0}^{k} \binom{k+3}{j} (-z)^j
\]

\[
= \frac{k!}{(k+3)!} \left[-z^{-3} \sum_{j=0}^{k+3} \binom{k+3}{j} (-z)^j + z^{-1} \binom{k+3}{2} - z^{-2} \binom{k+3}{1} + z^{-3} \binom{k+3}{0} \right]
\]

\[
= \frac{k!}{z^3(k+3)!} \left[-(1-z)^{k+3} + \frac{1}{2} z^2(k+2)(k+3) - z(k+3) + 1 \right],
\]

which gives the claim (A.7).
Moreover, if P is absolutely continuous distribution. Then for any $a \leq 1$, we have

$$P[r \leq W] = \frac{3}{8}P[W \leq r] + \frac{3}{8}(1-P[W < 1-r]).$$

Assuming that W has a density f_W (which indeed it has, as we will show below), we get

$$f_\mu(r) = \frac{1}{2}f_W(r) + \frac{1}{2}f_W(1-r).$$

Using the fact that $W \overset{d}{=} S_1 + \frac{1}{4}S_2$, we use the joint distribution of (S_1, S_2) to calculate

$$P[W \leq r] = \int_0^1 dx_1 \int_0^{1-x_1} dx_2 6(1-x_1 - x_2) 1 \{x_1 + \frac{1}{4}x_2 \leq r\}$$

$$= \int_0^r dx_1 \int_0^{(4r-x_1)/(1-x_1)} dx_2 6(1-x_1 - x_2).$$

After some routine calculation, we then obtain

$$P[W \leq r] = \begin{cases} 1 - \frac{4}{3}(1-r)^3 & \text{if } r \in [0, 1/4] \\ 1 - \frac{4}{3}(1-r)^3 & \text{if } r \in [1/4, 1] \end{cases}$$

Hence W has density f_W given by

$$f_W(r) = \begin{cases} 4(1-r)^2 - 4(1-4r)^2 & \text{if } r \in [0, 1/4] \\ 4(1-r)^2 & \text{if } r \in [1/4, 1]. \end{cases}$$

Then (A.8) follows from (A.9).

Appendix B. Continuity of random variables

In this appendix we give some results that will allow us to deduce the absolute continuity of certain distributions specified as solutions to fixed-point equations: specifically, we use these results in the proof of Proposition 3.4. The results in this section may well be known, but we were unable to find a reference for them in a form directly suitable for our application, and so we include the (short) proofs.

Lemma B.1. Let X and Y be independent random variables such that X has an absolutely continuous distribution. Then for any $a \neq 0$ we have $P[XY = a] = 0$. Moreover, if $P[Y = 0] = 0$, then XY is an absolutely continuous random variable.
Proof. For the moment assume that $P[X < 0]$, $P[X > 0]$, $P[Y < 0]$, and $P[Y > 0]$ are all positive. Take some $0 < c < d$. Then

$$P[XY \in (c, d)] = P[\log(X) + \log(Y) \in (\log c, \log d) \mid X > 0, Y > 0]P[X > 0]P[Y > 0] + P[\log(-X) + \log(-Y) \in (\log c, \log d) \mid X \leq 0, Y \leq 0]P[X \leq 0]P[Y \leq 0].$$

Note that conditioning X on the event $X > 0$ (or $X < 0$) preserves the continuity of X and the independence of X and Y. Then since the sum of two independent random variables at least one of which absolutely continuous is also absolutely continuous (see [9, Theorem 5.9, p. 230]) we have

$$P[\log(X) + \log(Y) \in (\log c, \log d) \mid X > 0, Y > 0] = \int_{\log c}^{\log d} f_+(x)\,dx,$n
$$P[\log(-X) + \log(-Y) \in (\log c, \log d) \mid X < 0, Y < 0] = \int_{\log c}^{\log d} f_-(x)\,dx,$$

for suitable probability densities f_+ and f_-. After the substitution $u = e^x$, this yields

$$P[XY \in (c, d)] = \int_{\log c}^{\log d} P[X > 0]P[Y > 0]f_+(\log u) + P[X > 0]P[Y > 0]f_-(\log u)\,du.$$

This expression is also valid if some of the probabilities for X and Y in the numerator of the integrand are zero. Therefore, we have, for any $0 < c < d$

$$P[XY \in (c, d)] = \int_{\log c}^{\log d} f(u)\,du,$$ \hspace{1cm} (B.1)

for some function $f(u)$ defined for $u > 0$. A similar argument applies to the case $c < d < 0$; then (B.1) is valid for any $c < d < 0$ as well, extending $f(u)$ for strictly negative u. In particular, it follows that $P[XY = a] = 0$ for $a \neq 0$.

Now if $P[Y = 0] = 0$, then $P[XY \neq 0] = 1$. Then we can set $f(0) = 0$ so that (B.1) holds for all $c, d \in \mathbb{R}$. This completes the proof.

Lemma B.2. Suppose that a random variable L satisfies the distributional equation

$$L \overset{d}{=} \begin{cases} Z_1 & \text{with probability } p_1 \\ \vdots \\ Z_n & \text{with probability } p_n, \end{cases}$$

where $n \in \mathbb{N}$, $\sum_{i=1}^n p_i = 1$, $p_i > 0$, and each Z_i is an absolutely continuous random variable. Then L is absolutely continuous.

Proof. Suppose Z_i has a density f_i. Then for any $-\infty \leq a < b \leq +\infty$ we have

$$P[L \in (a, b)] = \sum_{i=1}^n p_i P[Z_i \in (a, b)] = \sum_{i=1}^n p_i \int_a^b f_i(x)\,dx = \int_a^b \left[\sum_{i=1}^n p_i f_i(x) \right] \,dx,$$

which yields the statement of lemma.
Acknowledgements

Parts of this work were done at the University of Strathclyde, where the third author was also employed, during a couple of visits by the second author, who is grateful for the hospitality of that institution.

References

