Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Combined DFT and experimental studies of C–C and C–X elimination reactions promoted by a chelating phosphine–alkene ligand : the key role of penta-coordinate PdII.

Estévez, Laura and Tuxworth, Luke W. and Sotiropoulos, Jean-Marc and Dyer, Philip W. Dyer and Miqueu, Karinne (2014) 'Combined DFT and experimental studies of C–C and C–X elimination reactions promoted by a chelating phosphine–alkene ligand : the key role of penta-coordinate PdII.', Dalton transactions., 43 (29). pp. 11165-11179.

Abstract

A combined computational and experimental study of the coordination chemistry of phosphine–alkene ligand L1 (N-diphenylphosphino-7-aza-benzobicyclo[2.2.1]hept-2-ene) with Pd0 and PdII is presented. Experimentally it is established that ligand L1 promotes direct alkyl–alkyl and indirect alkyl–halide reductive elimination from PdII species, affording the palladium(0) complex [Pd(κ2-P,C-L1)2] (2) in each case. The effectiveness of L1 in promoting these reactions is attributed to the initial formation of a penta-coordinate intermediate [PdMe(X)(κ1-P-L1)(κ2-P,C-L1)] (X = Me, Cl) coupled with the ease with which it transforms to 2. From computation, a lower activation barrier for C(sp3)–C(sp3) coupling and subsequent elimination has been computed for a stepwise associative pathway involving the initial formation of [PdMe2(κ1-P-L1)(κ2-P,C-L1)], compared to that computed for direct elimination from its parent, cis-[PdMe2(κ2-P,C-L1)]. Moreover, the C(sp3)–C(sp3) coupling reaction has been found to be primarily under thermodynamic control. It has also been demonstrated computationally that the methyl group of penta-coordinate [PdCl(Me)(κ1-P-L1)(κ2-P,C-L1)] is susceptible to nucleophilic attack by the phosphorus lone pair of a further equivalent of ligand L1, which proceeds through an SN2-like transition state. This initiates an unusual, indirect intermolecular reductive elimination process, resulting in the formation of equimolar quantities of the methyl phosphonium chloride salt of L1 and complex 2, in agreement with experimental observations. In contrast to the C(sp3)–C(sp3) coupling, computation shows that this indirect C(sp3)–Cl reductive elimination process is essentially under kinetic control.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(1530Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1039/c4dt00340c
Record Created:16 Jul 2014 16:20
Last Modified:15 Mar 2015 00:30

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library