We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Evolution of the stellar-to-dark matter relation : separating star-forming and passive galaxies from z = 1 to 0.

Tinker, J.L. and Leauthaud, A. and Bundy, K. and George, M.R. and Behroozi, P. and Massey, R. and Rhodes, J. and Wechsler, R.H. (2013) 'Evolution of the stellar-to-dark matter relation : separating star-forming and passive galaxies from z = 1 to 0.', Astrophysical journal., 778 (2). p. 93.


We use measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy lensing within the COSMOS survey to constrain the stellar-to-halo mass relation (SHMR) of star forming and quiescent galaxies over the redshift range z = [0.2, 1.0]. For massive galaxies, M * gsim 1010.6 M ☉, our results indicate that star-forming galaxies grow proportionately as fast as their dark matter halos while quiescent galaxies are outpaced by dark matter growth. At lower masses, there is minimal difference in the SHMRs, implying that the majority low-mass quiescent galaxies have only recently been quenched of their star formation. Our analysis also affords a breakdown of all COSMOS galaxies into the relative numbers of central and satellite galaxies for both populations. At z = 1, satellite galaxies dominate the red sequence below the knee in the stellar mass function. But the number of quiescent satellites exhibits minimal redshift evolution; all evolution in the red sequence is due to low-mass central galaxies being quenched of their star formation. At M * ~ 1010 M ☉, the fraction of central galaxies on the red sequence increases by a factor of 10 over our redshift baseline, while the fraction of quenched satellite galaxies at that mass is constant with redshift. We define a "migration rate" to the red sequence as the time derivative of the passive galaxy abundances. We find that the migration rate of central galaxies to the red sequence increases by nearly an order of magnitude from z = 1 to z = 0. These results imply that the efficiency of quenching star formation for centrals is increasing with cosmic time, while the mechanisms that quench the star formation of satellite galaxies in groups and clusters is losing efficiency.

Item Type:Article
Keywords:Cosmology: observations, Galaxies: evolution, Galaxies: halos.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2013. The American Astronomical Society. All rights reserved.
Record Created:05 Aug 2014 13:35
Last Modified:13 Aug 2014 09:19

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library