Skip to main content

Research Repository

Advanced Search

Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts

Williams, H.M.; Bizimis, M.

Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts Thumbnail


Authors

H.M. Williams

M. Bizimis



Abstract

Mineralogical variations in the Earth's mantle and the relative proportions of peridotitic versus enriched and potentially crustally-derived pyroxenitic domains within the mantle have important implications for mantle dynamics, magma generation, and the recycling of surface material back into the mantle. Here we present iron (Fe) stable isotope data (δ 57Fe, deviation in 57Fe/54Fe from the IRMM-014 standard in parts per thousand) for peridotite and garnet–pyroxenite xenoliths from Oahu, Hawaii and explore Fe isotopes as tracer of both peridotitic and pyroxenitic components in the source regions of oceanic basalts. The pyroxenites have δ 57Fe values that are heavy (0.10 to 0.27‰) relative to values for mid-ocean ridge and ocean island basalts (MORB; OIB; View the MathML source) and the primitive mantle (PM; View the MathML source). Pyroxenite δ 57Fe values are positively correlated with bulk pyroxenite titanium and heavy rare earth element (REE) abundances, which can be interpreted in terms of stable isotope fractionation during magmatic differentiation and pyroxene cumulate formation. In contrast, the peridotites have light δ 57Fe values (−0.34 to 0.14‰) that correlate negatively with degree of melt depletion and radiogenic hafnium isotopes, with the most depleted samples possessing the most radiogenic Hf isotope compositions and lightest δ 57Fe values. While these correlations are broadly consistent with a scenario of Fe isotope fractionation during partial melting, where isotopically heavy Fe is extracted into the melt phase, leaving behind low-δ 57Fe peridotite residues, the extent of isotopic variation is far greater than predicted by partial melting models. One possibility is derivation of the samples from a heterogeneous source containing both light-δ 57Fe (relative to PM) and heavy-δ 57Fe components. While pyroxenite is a viable explanation for the heavy-δ 57Fe component, the origin of the depleted light-δ 57Fe component is more difficult to explain, as melting models predict that even large (>30%) degrees of melt extraction do not generate strongly fractionated residues. Multiple phases of melt extraction or other processes, such as metasomatism, melt percolation or the assimilation of xenocrystic olivine with light δ 57Fe values may need to be invoked to explain these light δ 57Fe values; a caveat to this is that these processes must either preserve, or generate correlations between δ 57Fe and Hf isotopes. Published variations in δ 57Fe in mantle melting products, such as MORB and OIB, are also greater than predicted by melting models assuming derivation from δ 57Fe-homogeneous mantle. For example, OIB from the Society and Cook-Austral islands, which have radiogenic Pb and Sr isotope compositions indicative of recycled components such as subduction modified, low-Pb oceanic crust and terrigenous sediments have heavy mean δ 57Fe values (∼0.21‰) significantly distinct to those of other OIB and MORB, which could explained by the presence of heavy-δ57Fe pyroxenite cumulate or pyroxenitic melt components, whereas large degree partial melts, such as komatiites and boninites, display light Fe-isotopic compositions which may reflect sampling of refractory, light-δ57Fe mantle components. Iron stable isotopes may therefore provide a powerful new means of fingerprinting mineralogical variations within the Earth's mantle and identifying the mineralogy of depleted and enriched components within the source regions of volcanic rocks.

Citation

Williams, H., & Bizimis, M. (2014). Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth and Planetary Science Letters, 404, 396-407. https://doi.org/10.1016/j.epsl.2014.07.033

Journal Article Type Article
Acceptance Date Jul 29, 2014
Online Publication Date Sep 13, 2014
Publication Date Oct 15, 2014
Deposit Date Aug 15, 2014
Publicly Available Date Sep 18, 2014
Journal Earth and Planetary Science Letters
Print ISSN 0012-821X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 404
Pages 396-407
DOI https://doi.org/10.1016/j.epsl.2014.07.033
Keywords Hawaii, Pyroxenite, Peridotite, Iron isotope, Primitive mantle.

Files




You might also like



Downloadable Citations