Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Aquatain® Mosquito Formulation (AMF) for the control of immature Anopheles Gambaie sensu stricto and Anopheles arabiensis : dose-responses, persistence and sub-lethal effect.

Mbare, O. and Lindsay, S.W. and Fillinger, U. (2014) 'Aquatain® Mosquito Formulation (AMF) for the control of immature Anopheles Gambaie sensu stricto and Anopheles arabiensis : dose-responses, persistence and sub-lethal effect.', Parasites and vectors., 7 . p. 438.

Abstract

Background: Persistent monomolecular surface films could benefit larval source management for malaria control by reducing programme costs and managing insecticide resistance. This study evaluated the efficacy of the silicone-based surface film, Aquatain® Mosquito Formulation (AMF), for the control of the Afrotropical malaria vectors, Anopheles gambiae sensu stricto and Anopheles arabiensis in laboratory dose–response assays and standardized field tests. Methods: Tests were carried out following guidelines made by the World Health Organization Pesticide Evaluation Scheme (WHOPES). Sub-lethal effects of AMF were evaluated by measuring egg-laying and hatching of eggs laid by female An. gambiae s.s. that emerged from habitats treated with a dose that resulted in 50% larval mortality in laboratory tests. Results: Both vector species were highly susceptible to AMF. The estimated lethal doses to cause complete larval mortality in dose–response tests in the laboratory were 1.23 (95% confidence interval (CI) 0.99-1.59) ml/m2 for An. gambiae s.s. and 1.35 (95% CI 1.09-1.75) ml/m2 for An. arabiensis. Standardized field tests showed that a single dose of AMF at 1 ml/m2 inhibited emergence by 85% (95% CI 82-88%) for six weeks. Females exposed as larvae to a sub-lethal dose of AMF were 2.2 times less likely (Odds ratio (OR) 0.45, 95% CI 0.26-0.78) to lay eggs compared to those from untreated ponds. However, exposure to sub-lethal doses neither affected the number of eggs laid by females nor the proportion hatching. Conclusion: AMF provided high levels of larval control for a minimum of six weeks, with sub-lethal doses reducing the ability of female mosquitoes to lay eggs. The application of AMF provides a promising novel strategy for larval control interventions against malaria vectors in Africa. Further field studies in different eco-epidemiological settings are justified to determine the persistence of AMF film for mosquito vector control and its potential for inclusion in integrated vector management programmes.

Item Type:Article
Keywords:Anopheles gambiae sensu stricto, Anopheles arabiensis, Vector control, Surface film, Larval source management.
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
(622Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1186/1756-3305-7-438
Publisher statement:© 2014 Mbare et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Record Created:23 Sep 2014 10:20
Last Modified:23 Sep 2014 13:16

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library