Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

A geometric and game-theoretic study of the conjunction of possibility measures.

Miranda, Enrique and Troffaes, Matthias C. M. and Destercke, Sébastien (2015) 'A geometric and game-theoretic study of the conjunction of possibility measures.', Information sciences., 298 . pp. 373-389.

Abstract

In this paper, we study the conjunction of possibility measures when they are interpreted as coherent upper probabilities, that is, as upper bounds for some set of probability measures. We identify conditions under which the minimum of two possibility measures remains a possibility measure. We provide graphical way to check these conditions, by means of a zero-sum game formulation of the problem. This also gives us a nice way to adjust the initial possibility measures so their minimum is guaranteed to be a possibility measure. Finally, we identify conditions under which the minimum of two possibility measures is a coherent upper probability, or in other words, conditions under which the minimum of two possibility measures is an exact upper bound for the intersection of the credal sets of those two possibility measures.

Item Type:Article
Keywords:Possibility measure, Conjunction, Imprecise probability, Game theory, Natural extension, Coherence.
Full text:(AM) Accepted Manuscript
Download PDF
(323Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1016/j.ins.2014.10.067
Publisher statement:NOTICE: this is the author’s version of a work that was accepted for publication in Information sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information sciences, 298, 2015, 10.1016/j.ins.2014.10.067.
Record Created:27 Oct 2014 11:20
Last Modified:06 Jan 2015 10:07

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library