We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Modelling shock heating in cluster mergers - I. Moving beyond the spherical accretion model.

McCarthy, I.G. and Bower, R.G. and Balogh, M.L. and Voit, G.M. and Pearce, F.R. and Theuns, Tom and Babul, A. and Lacey, C.G. and Frenk, C.S. (2007) 'Modelling shock heating in cluster mergers - I. Moving beyond the spherical accretion model.', Monthly notices of the Royal Astronomical Society., 376 (2). pp. 497-522.


The thermal history of the intracluster medium (ICM) is complex. Heat input from cluster mergers, from active galactic nuclei (AGN) and from winds in galaxies offsets and may even prevent the cooling of the ICM. Consequently, the processes that set the temperature and density structure of the ICM play a key role in determining how galaxies form. In this paper, we focus on the heating of the ICM during cluster mergers, with the eventual aim of incorporating this mechanism into semi-analytic models for galaxy formation. We generate and examine a suite of non-radiative hydrodynamic simulations of mergers in which the initial temperature and density structure of the systems are set using realistic scaling laws. Our collisions cover a range of mass ratios and impact parameters, and consider both systems composed entirely of gas (these reduce the physical processes involved), and systems comprising a realistic mixture of gas and dark matter. We find that the heating of the ICM can be understood relatively simply by considering evolution of the gas entropy during the mergers. The increase in this quantity in our simulations closely corresponds to that predicted from scaling relations based on the increase in cluster mass. We examine the physical processes that succeed in generating the entropy in order to understand why previous analytical approaches failed. We find the following. (i) The energy that is thermalized during the collision greatly exceeds the kinetic energy available when the systems first touch. The smaller system penetrates deep into the gravitational potential before it is disrupted. (ii) For systems with a large mass ratio, most of the energy is thermalized in the massive component. The heating of the smaller system is minor and its gas sinks to the centre of the final system. This contrasts with spherically symmetric analytical models in which accreted material is simply added to the outer radius of the system. (iii) The bulk of the entropy generation occurs in two distinct episodes. The first episode occurs following the collision of the cores, when a large shock wave is generated that propagates outwards from the centre. This causes the combined system to expand rapidly and overshoot hydrostatic equilibrium. The second entropy generation episode occurs as this material is shock heated as it recollapses. Both heating processes play an important role, contributing approximately equally to the final entropy. This revised model for entropy generation improves our physical understanding of cosmological gas simulations.

Item Type:Article
Keywords:Galaxies, Clusters, Formation, Cosmology, Dark-matter halos, X-ray properties, Particle hydrodynamics simulations, Cooling flow clusters, Galaxy clusters, Intracluster medium, Orbital parameters, Entropy profiles.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2007 The Authors. Journal compilation © 2007 RAS Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Record Created:27 Nov 2014 15:50
Last Modified:03 Jun 2015 09:48

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library