APPLICATION OF RECEIVER OPERATING CHARACTERISTIC CURVE FOR PIPELINE RELIABILITY ANALYSIS

Kong Fah Tee1*, Lutfor Rahman Khan1 and Tahani Coolen-Maturi2

1Department of Civil Engineering, University of Greenwich, UK
2Durham University Business School, Durham University, Durham, UK

ABSTRACT
Structural reliability analysis of buried pipeline systems is one of the fundamental issues for water and wastewater asset managers. Measuring the accuracy of a reliability analysis or a failure prediction technique is an effective approach to enhancing its applicability and provides guidance on selection of reliability or failure prediction methods. The determination of threshold value for a particular pipe failure criterion provides useful information on reliability analysis. However, this threshold value is not always known. In this paper, Receiver Operating Characteristic (ROC) curve has been applied where empirical and Nonparametric Predictive Inference (NPI) techniques are used to evaluate the accuracy of pipeline reliability analysis and to predict the failure threshold value. Multi-failure conditions, namely, corrosion induced deflection, buckling, wall thrust and bending stress have been assessed in this paper. It is hoped that choosing the optimal operating point on the ROC curve which involves both maintenance and financial issues, can be ideally implemented by combining the ROC analysis with a formal risk-cost management of underground pipelines.

Keywords: Receiver Operating Characteristic (ROC) curve; Nonparametric Predictive Inference (NPI); Reliability analysis; Underground pipelines; Corrosion.

*To whom correspondence should be addressed. Email: K.F.Tee@gre.ac.uk

Preprint submitted to Journal of Risk and Reliability
1. INTRODUCTION

Many challenges have been faced by water and wastewater industry during installation and maintenance of underground pipelines. The most common challenges are found as various pipe failure modes under loading, poor design detailing and installation practices, insufficient corrosion protection procedures, pipe material deterioration, scouring underneath the ground level, frost heave action and insufficient understanding of product limitations. In reality, a buried pipe’s mechanical strength begins to decrease as soon as it is installed because of the environmental conditions surrounding the pipe [1-2]. For buried metal pipelines subject to both corrosion and external loading, a vital failure criterion is the loss of structural strength which is influenced by localised or overall reduction in pipe wall thickness. Due to their low visibility and lack of proper information regarding underground pipes condition, assessment and maintenance are frequently neglected until a disastrous failure occurs. The long-term planning for renewal of underground pipe distribution networks requires the ability to predict system reliability as well as assess the economic impact with good accuracy [3-6].

Structural reliability analysis of buried pipeline systems is one of the fundamental issues for water and wastewater asset managers. Methods of reliability analysis such as first order reliability method, second-order reliability method, point estimate method, Monte Carlo simulation, gamma process, probability density evolution method, subset simulation, dynamic reliability, etc. are available in literature [7-13]. The correlation coefficients between different failure modes show that all the failure modes are strongly correlated positively, i.e., where the failure modes might happen concurrently within a buried pipeline system [14]. The determination of threshold value for a particular pipe failure mode provides useful information on reliability analysis. However, this threshold value is not always known. When the actual value of pipe condition (such as deflection, buckling, bending, etc.) is greater than the threshold value or allowable limit, then this indicates a failure condition and if the actual value is smaller than the allowable limit, then it indicates a non-failure condition. However, in reality, pipelines may not follow the predicted pipe conditions and failure criteria which are estimated according to the proposed models. Gustafson and Clancy [15], Kettler and Goulter [16], Mailhot et al [17] showed that there were 10% to 20% discrepancies in the actual and the estimated pipe conditions measured by available models such as Cox’s proportional hazards model, Weibull and exponential distributions, etc.
Classical reliability theory and methodologies rarely consider the actual state of a pipe system and therefore, these are not capable to reflect the dynamics of runtime systems and failure processes. Conventional methods are typically useful in design and prediction of long term pipe behaviour. However these are not good enough in pipe reliability evaluation with good accuracy. Measuring the accuracy of a pipe reliability analysis technique is an effective approach to enhancing its applicability and provides guidance on selection of reliability or failure prediction methods. One of the accuracy measurements for assessment methods is Receiver Operating Characteristic (ROC) curve which is a statistical approach with concepts like sensitivity and specificity to express the accuracy.

ROC curve has been commonly used for describing the performance of medical tests for parametric and non-parametric analysis. The ROC curve has also been used in many other areas, such as signal detection, radiology, machine learning, data mining and credit scoring [18-20]. In recent years, Nonparametric Predictive Inference (NPI) has been developed as an alternative and frequent statistical framework method based on few modelling assumptions and considers one or more future observations instead of a population [21]. It is a statistical method based on Hill’s assumption [22], which gives direct probabilities for a future observable random quantity, given observed values of related random quantities [23]. NPI uses lower and upper probabilities for uncertainty quantification and has strong consistency properties within theory of interval probability [21]. From a statistical perspective, NPI is defined as a plot of results as true positive fraction (TPF) or sensitivity along y coordinate versus false positive fraction (FPF) or its 1-specificity along x coordinate. Normally, ROC curve is useful in evaluating the discriminatory ability of an analysis, finding optimal cut-off point and comparing efficacy of two or more assessment or tests results.

The authors Debon et al [24] and Arian et al [25] conclude by identifying a knowledge gap and research possibilities, mainly relating to data collection and how to best use the existing data for the development and calibration of predictive deterioration models, risk assessment methods, etc. In this study, a ROC curve has been applied in buried flexible metal pipeline network where classical (or empirical) and Nonparametric Predictive Inference (NPI) technique are used for assessing the accuracy of failure prediction and identifying failure-prone situations, i.e. the threshold value for different pipe failure modes. The multiple time-dependent failure modes for underground flexible metal pipelines, namely, corrosion induced...
deflection, buckling, wall thrust and bending are considered. The loss of structural strength is due to corrosion through reduction of pipe wall thickness which then leads to pipe failure. Pipe wall thickness is considered as a key random variable and Monte Carlo simulation has been applied to generate the thickness data based on pipe material and soil parameters.

The contents of this paper are structured as follows. In Section 2, the formulations for pipe failure modes of corrosion induced deflection, buckling, wall thrust and bending are presented. The basic of ROC curve is studied in Section 3, where classical ROC and NPI for ROC curve are briefly discussed. In Section 4, a numerical example is considered for underground pipeline reliability prediction using ROC curve. The results and discussion are presented for different failure modes in Section 5. Finally, some conclusions are made on the basis of outcomes from this study in Section 6.

2. PIPE FAILURE MODES

For a buried pipe structure, the number of potential failure modes is very high. This is true in spite of the simplifications imposed by assumptions such as having a finite number of failure elements at given points of the structure and only considering the proportional loadings. It is, therefore, important to have a method by which the most critical failure modes can be identified. The critical failure modes are those contributing significantly to the reliability of the system. In this paper, the dominating failure criteria of flexible pipes are characterised by limit states as follows:

a) Excessive deflection;
b) Actual buckling pressure greater than the critical buckling pressure;
c) Actual wall thrust greater than critical wall thrust;
d) Actual bending stress greater than the allowable stress

The failure modes adopted here are due to loss of structural strength of pipelines and these failure criteria are influenced by corrosion through reduction of the pipe wall thickness over time.

2.1 Corrosion of metal pipes

Preprint submitted to Journal of Risk and Reliability
Buried pipes are made of plastic, concrete or metal, e.g. steel, galvanized steel, ductile iron, cast iron or copper. Plastic pipes tend to be resistant to corrosion. Damage in concrete pipes can be attributed to biogenous sulphuric acid attack [26-27]. On the other hand, metal pipes are susceptible to corrosion. Metal pipe corrosion pit is a continuous and variable process. Under certain environmental conditions, metal pipes can become corroded based on the properties of the pipe, soil, liquid properties and stray electric currents. The corrosion pit depth can be modelled with respect to time [28-29] as shown in Eq. (1).

The corrosion pit depth, \(D_T = kT^n \)
(1)

where \(D_T \) is corrosion pit depth, \(T \) is exposure time and \(k \) and \(n \) are corrosion empirical constants which are determined from experiments and/or field data.

Due to reduction of wall thickness given by Eq. (1), the moment of inertia of pipe wall per unit length, \(I \) and the cross-sectional area of pipe wall per unit length, \(A_s \) can be defined as follows [30-31].

\[
I = (t - D_T)^3 / 12 \quad \text{and} \quad A_s = t - D_T
\]
(2)

where \(t \) is wall thickness of pipe.

Deflection

The performance of a flexible pipe in its ability to support load is typically assessed by measuring the deflection from its initial shape. Deflection is quantified in terms of the ratio of horizontal (or vertical) increased diameter to the original pipe diameter. Normally, the allowable deflection for flexible pipe is 5% of its internal diameter [32]. The actual deflection for flexible pipes \(\Delta_y \) can be calculated as follows [33].

\[
\Delta_y = \frac{K_p(D_tW_t + P_t)D}{\left(\frac{8EI}{D^3} + 0.061E\right)}
\]
(3)
where K_b is deflection coefficient, D_k is deflection lag factor, D is mean diameter $= D_i + 2c$, D_i is inside diameter and c is distance from inside diameter to neutral axis, W_c is soil load, P_s is live load, E is modulus of elasticity of pipe material and E' is modulus of soil reaction.

Buckling Pressure

Buckling is a premature failure in which the structure becomes unstable at a stress level that is well below the yield strength of structural material [8]. The actual buckling pressure should be less than the critical buckling pressure for the safety of structure. The actual buckling pressure, p and the allowable buckling pressure, p_a can be calculated as follows [34].

\[
p = R_w \gamma_s + \gamma_w H_w + P_s
\]

\[
p_a = \sqrt{32 R_w B E' EI / D^3}
\]

where R_w is water buoyancy factor $= 1 - 0.33 (H_w / H)$, γ_s is unit weight of soil, γ_w is unit weight of water, H_w is height of groundwater above the pipe and B' is empirical coefficient of elastic support.

Wall Thrust

Wall thrust or wall stress on a pipe wall is determined by the total load acting on the pipe including soil arch load W_A, live load P_s and hydrostatic pressure P_w as shown in Eq. (6). Two wall thrust analyses are required: (a) accounts both the dead load and live load and employs the short term material properties throughout the procedure, (b) accounts only the dead load and employs the long-term material properties. Then, the most limiting value is used for wall thrust analysis [32, 35]. The actual wall thrust, T and the allowable wall thrust, T_a can be calculated as follows.

The actual wall thrust, $T = 1.3(W_A + P_s C_L + P_w)(D_o / 2)$

where D_o is outside diameter and C_L is live load distribution coefficient.

The allowable wall thrust, $T_a = F_A A_s \phi_p$

Preprint submitted to Journal of Risk and Reliability
where \(F_y \) is the minimum tensile strength of pipe and \(\phi_p \) is capacity modification factor for pipe.

Bending Stress

Under the effect of earth and surface loads, the buried pipe may bend through pipe wall. The allowable bending stress for flexible pipes is longitudinal tensile strength of pipe material. The bending stress is important to ensure that it is within material capability. Excessive bending will cause the pipe wall to collapse. The actual bending stress \(\sigma_b \) can be calculated as follows [32].

\[
\text{Bending stress, } \sigma_b = 2D_f E \Delta_y y_0 / D^2
\]

where \(D_f \) is shape factor, \(y_0 \) is distance from centroid of pipe wall to the furthest surface of the pipe and \(\Delta_y \) is the pipe deflection which can be calculated from Eq. (3).

3. **BASIC OF ROC CURVE**

ROC curves are two-dimensional graphs that visually depict the performance and performance trade-off of a classification model [36]. ROC curves are originally designed as a tool to distinguish between the actual results and analytical results. Sensitivity and specificity, which are defined as the number of true positive decisions (the number of actually positive cases) and the number of true negative decisions (the number of actually negative cases), respectively, constitute the basic measures of performance of ROC curve. A ROC curve displays the full picture of trade-off between the true positive fraction (TPF) or sensitivity and false positive fraction (FPF) or 1 – specificity across a series of cut-off points. Area under the curve is considered as an effective measure of inherent validity of an analysis or experimental result. It is a very powerful tool to measure the accuracy of analysis results and commonly used in medical field but currently ROC curves are also using in other fields, such as engineering and agricultures.

A ROC curve is applicable only for continuous data or at least ordinal data. A classification model classifies each instance into one of two classes: a true and a false class. This gives rise to four possible classifications for each instance: (1) a true positive, (2) a true negative, (3) a
false positive, and (4) a false negative. The classifications that lie along the major axis x and axis y of the curve are the 100% correct classifications, that is, the true positives and the true negatives, respectively (Figure 1). For a perfect model, only the true positive and true negative fields are filled out, the other fields would be zero. A number of regions of interest can be identified in a ROC graph. The ROC curve illustrates the relationship between TPF and FPF at all possible cut-off levels. Therefore, it can be used to assess the performance of analysis results independently with respect to the decision threshold.

Area under ROC curve and the threshold value of reliability assessment can be predicted from ROC curve which are main concerns in this study. Let D be a variable describing the pipeline condition, where $D = 1$ for pipe failure condition and $D = 0$ for non-failure condition. Suppose that Y is a continuous random quantity which is related to the pipe condition (such as pipe wall thickness) and those large values of Y which are greater than threshold or allowable limit are failure states. Using a threshold, for example c, the result is called positive if $Y > c$, so it indicates a failure condition and if $Y < c$, i.e., negative, pipe condition is a non-fail condition, where $c \in (-\infty, \infty)$. Obviously, an accurate assessment will have both sensitivity and specificity close to 1. In ROC curve analysis, the aim is to find a cut-off point (threshold) of a classifier that minimizes the number of false positives and false negatives (maximizes the sensitivity and specificity). Based on the above conceptions, FPF, TPF and ROC curve can be estimated using Eqs. (9) – (11), respectively [23].

$$\text{FPF} = P(Y^0 > c \mid D = 0) = S_0(c)$$

(9)

$$\text{TPF} = P(Y^1 > c \mid D = 1) = S_1(c)$$

(10)

$$\text{ROC} = \{(\text{FPF}(c), \text{TPF}(c), c \in (-\infty, \infty))\}$$

(11)

Throughout this paper it is assumed that the two groups (failure and non-failure) are fully independent, i.e., no information about any aspect related to one group contains information about any aspect of the other group. If there are n_1 conditions data from a failure group and n_0 data from non-failure group, then these can be denoted by \{\(y_i^1, i = 1, 2, \ldots, n_1\}\} and \{\(y_j^0, j = 1, 2, \ldots, n_0\}\}, respectively. For the classical (empirical) method, these observations per
group are assumed to be realisations of random quantities that are identically distributed as \(Y^1 \) and \(Y^0 \) with corresponding survival functions
\[
S_1(y) = P[Y^1 > y] \quad \text{and} \quad S_0(y) = P[Y^0 > y].
\]
According to Pepe [18], the empirical estimator of the \(ROC \) can be estimated as follows.

\[
\hat{ROC} = \{(FPF(c), TPF(c)), c \in (\infty, \infty)\}
\]

\[
TPF(c) = \hat{S}_1(c) = \frac{1}{n_1} \sum_{i=1}^{n_1} I\{y_i^1 > c\}
\]

\[
FPF(c) = \hat{S}_0(c) = \frac{1}{n_0} \sum_{j=1}^{n_0} I\{y_j^0 > c\}
\]

where \(I\{A\} \) is the indicator function which is equal to 1 if \(A \) is true or else. \(\hat{S}_1 \) and \(\hat{S}_0 \) are the empirical survival functions for \(Y^1 \) and \(Y^0 \), respectively. The empirical estimator of the \(ROC \) can also be written as shown in Eq. (18).

\[
\hat{ROC}(c) = \hat{S}_1(\hat{S}_0^{-1}(c))
\]

3.1 Area under ROC curve

One of the important factors in \(ROC \) curve analysis is the area under the \(ROC \) curve, denoted as \(AUC \). \(AUC \) has been used to predict the accuracy of failure prediction of pipeline in this paper. \(AUC \) can be estimated both parametrically and non-parametrically. The parametric estimation of \(AUC \) under the empirical \(ROC \) curve is the area under the curvature. On the other hand, the nonparametric estimation of the area under the empirical \(ROC \) curve is the summation of the areas of the trapezoids formed by connecting the points on the \(ROC \) curve. The nonparametric estimate of the area under the empirical \(ROC \) curve tends to underestimate \(AUC \) when discrete rating data are collected, whereas the parametric estimate of \(AUC \) has negligible bias except when extremely small case samples are employed. Therefore, for discrete rating data, the parametric method is preferred. For continuous or quasi-continuous data (e.g., a percent confidence scale from 0\% to 100\%), the parametric and nonparametric estimates of \(AUC \) will have very similar values and the bias is negligible [36].
A useful way to estimate the area under the ROC curve, AUC, can be expressed using Eq. (16) [37].

$$AUC = \int_{0}^{1} ROC(t) dt$$

(16)

According to Zhou et al [36], the AUC is equal to the probability that the analytical results from a randomly selected pair of fail and non-fail group, as shown in Eq. (17)

$$AUC = P[Y^1 - Y^0]$$

(17)

The AUC measures the overall performance of the assessment. Higher AUC values indicate more accurate results, where $AUC = 1$ for perfect or ideal results and $AUC = 0.5$ for uniform results. So the AUC represents the ability to correctly classify a randomly selected individual as being from either the failure group or non-failure group. The empirical estimator of the AUC is the well-known Mann–Whitney U statistic which can be represented by Eq. (18) [23].

$$\hat{AUC} = \frac{1}{n_in_0} \sum_{j=1}^{n_i} \sum_{i=1}^{n_0} \psi(y^i_j, y^0_j)$$

(18)

where

$$\psi(y^i_j, y^0_j) = \begin{cases}
1 & \text{if } y^i_j > y^0_j \\
0.5 & \text{if } y^i_j = y^0_j \\
0 & \text{if } y^i_j < y^0_j
\end{cases}$$

The AUC value of 0.50 to 0.75 is fair, 0.75 to 0.92 is good, 0.92 to 0.97 is very good and 0.97 to 1.00 is considered as excellent result of an analysis [38].

3.2 Optimum threshold value in ROC curve

Another potential use of ROC curve is optimising the threshold value of an assessment. The optimum threshold values for pipe failure due to corrosion induced deflection, buckling, wall thrust and bending stress have been predicted in this study. The ROC curve comprises all possible combinations of sensitivity and specificity at all possible threshold values. This
offers the opportunity to assess the optimal threshold value to be used in critical decision practice.

In practice, choosing an optimal threshold value based on ROC analysis is practicable only for continuous data. For continuous data, all operating points on the curve correspond to realistic threshold values are considered. Different criteria are used to find optimal threshold point from ROC curve, such as points on curve closest to the (0, 1) and Youden index (J) etc, based on number of observed operating points (Figure 2). The Youden index (J) is the point on the ROC curve which is farthest from the line of equality [39].

Most of the operating points on the ROC curve consist of sensitivity and specificity combinations that do not correspond to realistic threshold values. Naturally, one would identify the threshold or optimal operating point as the point on the ROC curve that is closest to the ideal upper left-hand corner. The optimal range of the operating point will thus, shift towards the lower left hand corner of the ROC graph. Ideally, such decisions should be made by linking the constructed ROC curve in explicit decision analysis. If S_N and S_p denote sensitivity and specificity respectively, the distance between the point (0, 1) and any point on the ROC curve can be predicted by applying Eq. (19) as follows [39].

$$d = \sqrt{[(1 - S_N)^2 + (1 - S_p)^2]}$$

where d is the distance from top point (0, 1) to any point on curve. To obtain the optimal cut-off point, it is necessary to calculate this distance for each observed cut-off point and locate the point where distance is found minimum. The main aim of Youden index is to maximise the difference between $TPF (S_N)$ and $FPF (1 - S_p)$ and this yields $J = Max[S_N, S_p]$. The value of J can be located by doing a search of plausible value where sum of sensitivity and specificity is the maximum value [39].

3.3 NPI for ROC curve

In NPI, the uncertainty is quantified by lower and upper probabilities for events of interest. In effect, the optimal lower and upper bounds for the ROC, AUC can be derived. Suppose that \(\{Y_i, i = 1, 2, \ldots, n_i, n_i + 1\} \) are continuous and exchangeable random quantities from the failure
group and \(\{ Y_j^1, j = 1, 2, \ldots, n_0, n_0 + 1 \} \) are quantities from the non-failure group, where \(Y_{n_1 + 1}^1 \) and \(Y_{n_0 + 1}^0 \) are the next observations from the failure and non-failure groups following \(n_1 \) and \(n_0 \) observations, respectively. Let \(y_1^1 < \ldots < y_{n_1}^1 \) are the ordered observed values for the first \(n_1 \) pipes data from the failure group and \(y_0^1 < \ldots < y_{n_0}^1 \) for the first \(n_0 \) pipes data from the non-failure group. For ease of notation, let \(y_0^1 = y_0^0 = -\infty \) and \(y_1^1 = y_0^0 + \infty \). Thus NPI can be used for reliability applications when the data represents failure and non-failure event which are non-negative. The NPI lower and upper survival functions for \(Y_{n_1 + 1}^1 \) and \(Y_{n_0 + 1}^0 \) can be determined as follows [20-21].

\[
S_1(c) = \overline{TPF}(c) = \frac{\sum_{i=1}^{n_1} I\{ y_i^1 > c \}}{n_1 + 1}
\]

(20)

\[
\bar{S}_1(c) = \overline{FPF}(c) = \bar{P}(Y_{n_1 + 1}^1 > c) = \frac{\sum_{i=1}^{n_1} I\{ y_i^1 > c \} + 1}{n_1 + 1}
\]

(21)

\[
S_0(c) = \overline{FPF}(c) = \bar{P}(Y_{n_0 + 1}^0 > c) = \frac{\sum_{j=1}^{n_0} I\{ y_j^0 > c \}}{n_0 + 1}
\]

(22)

\[
\bar{S}_0(c) = \overline{FPF}(c) = \bar{P}(Y_{n_0 + 1}^0 > c) = \frac{\sum_{j=1}^{n_0} I\{ y_j^0 > c \} + 1}{n_0 + 1}
\]

(23)

where \(\bar{P} \) and \(\bar{P} \) are NPI lower and upper probabilities. As the ROC curve clearly depends monotonously on the survival functions, therefore, it is easily seen that the optimal bounds, which is defined to be the NPI lower and upper ROC curves areas, are given as follows [37].

\[
AUC = P(Y_{n_1 + 1}^1 > Y_{n_0 + 1}^0) = \frac{1}{(n_1 + 1)(n_0 + 1)} \sum_{j=1}^{n_0} \sum_{i=1}^{n_1} I\{ y_i^1 > y_j^0 \}
\]

(24)

\[
\overline{AUC} = \bar{P}(Y_{n_1 + 1}^1 > Y_{n_0 + 1}^0) = \frac{1}{(n_1 + 1)(n_0 + 1)} \left[\sum_{j=1}^{n_0} \sum_{i=1}^{n_1} I\{ y_i^1 > y_j^0 \} + n_1 + n_0 + 1 \right]
\]

(25)
Based on Eqs. (24) and (25), it is evident that the difference between upper and lower AUC can be expressed as follows.

$$AUC - \overline{AUC} = \frac{n_1 + n_0 + 1}{(n_1 + 1)(n_0 + 1)}$$ \hspace{1cm} (26)

Equation (26) indicates that it depends on the two sample sizes n_0 and n_1 only. Similarly for the partial area under ROC curve which can estimated using Eqs. (24) and (25) for any specific point of interest.

4. NUMERICAL APPLICATION
The proposed ROC approach has been applied to a steel buried pipe under a heavy roadway subject to external loading and corrosion. Four underground pipeline failure modes, namely corrosion induced deflection, buckling, wall thrust and bending stress have been used to illustrate the application of ROC curve in the accuracy of failure prediction and threshold value estimation. The loss of structural strength is due to corrosion through reduction of pipe wall thickness which then leads to pipe failure. In this study, pipe condition (i.e. pipe wall thickness) is considered as a classifier whereas the threshold is the cut-off point or limit to distinguish between the failure and non-failure conditions. The threshold obtained from the ROC curve is compared with the allowable limit from the limit state function. Due to lack of real data, 100 pipe wall thicknesses have been simulated at 100-year of service life using Monte Carlo method for each failure criterion based on soil and pipe material listed in Table 1 [29, 40, 41].

It is assumed that when actual pipe behaviour or pipe wall thickness exceeds the threshold value or allowable limit $(Y > c)$, the result is positive $(D = 1)$, i.e. failure condition; and when $Y < c$, the result is negative $(D = 0)$, i.e. non-failure condition. However, there are 10% to 20% discrepancies in the actual and the estimated pipe conditions [17]. Therefore, it is assumed that, the predictions of pipe failure and non-failure conditions are not 100% accurate. The empirical and NPI lower and upper ROC curves have been applied for different failure modes with 10%, 20% and 30% noise which are introduced into the data to simulate the inaccurateness of failure predictions. Tables 2 to 5 show the pipe wall thickness with 10%
inaccurate prediction for the case of corrosion induced deflection, buckling, wall thrust and bending stress, respectively.

5. RESULTS AND DISCUSSION

The empirical ROC curves are applied for estimation of AUC and threshold value of pipe failure condition with 10%, 20% and 30% inaccurate failure prediction for different corrosion induced pipe failure modes. The performance of the ROC curve analysis is computed in terms of the true positive and false positive rates. This traces the curve from left to right (maximum ranking to minimum ranking) in the ROC graph. That means that the left part of the curve represents the behaviour of the model under high decision thresholds (conservative) and the right part of the curve represents the behaviour of the model under lower decision thresholds.

Empirical AUC, which is interpreted as the average value of sensitivity for all possible values of specificity, is a measure of the overall performance of the analysis for every failure case. The area under empirical ROC curve (AUC) is estimated using Eq. (18). AUC can take any value between 0 and 1, where a bigger value suggests the better overall performance of an analysis with 95% confidence level. Figures 3 to 6 show that AUC is higher for the case of 10% than that for 20% inaccurate prediction. Similarly, the case for 20% inaccurate prediction shows higher AUC than that for 30%. This indicates that the area under empirical ROC curve can be used to predict the reliability accuracy for different failure modes.

Table 6 indicates that different failure modes have different AUC for the same percentage of inaccurate prediction due to randomness of the data. The analysis shows that if simulated inaccurate prediction is 10%, the accuracy of the results is still fair enough for all the failure modes (AUC > 0.75). However if it is more than 10%, the accuracy of the results falls below the acceptable value (AUC < 0.75) which is implemented in practice as suggested by Huguet et al [38].

The allowable limit and the corresponding threshold pipe wall thickness for each corrosion induced failure modes, namely deflection, buckling, wall thrust and bending stress can be calculated using pipeline design formula as discussed in Section 2. For example, in the case of corrosion induced deflection, the allowable limit of deflection is estimated as 5% of initial
inside diameter of pipe. Then, the corresponding threshold pipe wall thickness is calculated using Eq. (3). Similarly, in the case of corrosion induced buckling, the allowable limit is estimated using Eq. (4) based on the assumption that the pipe fails when the actual buckling pressure is equal to the allowable buckling pressure and then the corresponding pipe wall thickness is calculated using Eq. (5). The same procedure is followed for other failure modes.

Besides that, the proposed approach has established a threshold at which a pipe can be considered in a high-risk condition. The threshold values of pipe wall thickness are predicted for the failure modes of deflection, buckling, wall thrust and bending stress. The optimum threshold value for each failure criteria predicted from the empirical ROC curve is obtained from Eq. (19) and the results are shown in Table 6 for comparison with the values obtained from pipeline design formula. Both results are reasonably close in which the optimum threshold value of pipe wall thickness obtained from empirical ROC curve is more conservative. The results from Table 6 also show that the corrosion induced bending stress is the most dominating failure mode whereas buckling is the least susceptible failure mode.

Next, NPI ROC curves are applied to estimate the lower and upper bounds of AUC for all the failure modes and the results are shown in Figures 7 -10 and Table 7 with different percentages of inaccurate prediction. The NPI lower and upper areas under the ROC curves are calculated from Eqs. (24) and (25), respectively. As shown in Tables 6 and 7, the area under the upper bound of NPI AUC is always larger than empirical AUC for all the failure modes. It is clear that with increasing the percentage of inaccurate prediction, the areas under the upper and lower bounds of NPI are decreased. Therefore, the accurateness of the failure predictions is decreased as shown in Figures 7 to 10 and Table 7.

The performance of a prediction analysis should be judged in the context of the situation to which the data is applied. It can be seen that AUC for NPI is given in terms of upper and lower limits instead of a single curve. In this way it provides an interval of accuracy prediction which is more reasonable compared to classical ROC. Alternatively, the partial area estimation, where only a portion of the entire ROC curve needs to be considered, can also be used to predict the accuracy of an analysis when a particular FPF is useful indicator.
6. CONCLUSIONS

ROC curve has been applied in reliability analysis for underground pipelines due to corrosion induced deflection, buckling, wall thrust and bending stress. The ROC curve provides a performance assessment model for prediction of pipe failure state function. The analysis shows that ROC curve is a useful technique to predict the optimum threshold value and the accuracy of the results. The area under the curve provides an objective valuation for the accuracy of an analysis with combinations of sensitivity and specificity values. Thus two or more failure prediction methods can be compared using ROC curve. The results demonstrate that with increasing inaccurateness of failure prediction, the areas of the ROC curves (both classical and NPI) are decreased. Choosing the optimal operating point on the ROC curve which involves both maintenance and financial issues, can be ideally implemented in a formal risk-cost management process of buried pipeline network.

REFERENCES

Preprint submitted to Journal of Risk and Reliability

Preprint submitted to Journal of Risk and Reliability

Figure 1: Basic of a typical ROC Curve

Figure 2: A typical best cut-off or threshold value in ROC curve
Figure 3: Empirical ROC curve for pipe failure due to corrosion induced deflection for different percentages of inaccurate prediction

Figure 4: Empirical ROC curve for pipe failure due to corrosion induced buckling for different percentages of inaccurate prediction
Figure 5: Empirical ROC curves for pipe failure due to corrosion induced wall thrust for different percentages of inaccurate prediction

Figure 6: Empirical ROC curves for pipe failure due to corrosion induced bending stress for different percentages of inaccurate prediction
Figure 7: *NPI* lower and upper *ROC* curves for pipe failure due to corrosion induced deflection for different percentages of inaccurate prediction.

Figure 8: *NPI* lower and upper *ROC* curves for pipe failure due to corrosion induced buckling for different percentages of inaccurate prediction.
Figure 9: *NPI* lower and upper *ROC* curves for pipe failure due to corrosion induced wall thrust for different percentages of inaccurate prediction

Figure 10: *NPI* lower and upper *ROC* curves for pipe failure due to corrosion induced bending stress for different percentages of inaccurate prediction

Preprint submitted to Journal of Risk and Reliability
Table 1: Materials properties

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>COV (%)</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoyancy factor</td>
<td>R_w</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trench width</td>
<td>B_d</td>
<td>2.00 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Outside pipe diameter</td>
<td>D_o</td>
<td>1.231 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inside pipe diameter</td>
<td>D_i</td>
<td>1.189 m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soil constrained modulus</td>
<td>M_s</td>
<td>2.02×10^3 kPa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deflection Lag factor</td>
<td>D_L</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shape factor</td>
<td>D_f</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Capacity modification factor for pipe</td>
<td>ϕ_p</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Capacity modification factor for soil</td>
<td>ϕ_s</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Allowable bending stress</td>
<td>σ_a</td>
<td>450 MPa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>ν</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elastic modulus of pipe</td>
<td>E</td>
<td>213.74×10^6 kPa</td>
<td>1.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Backfill soil modulus</td>
<td>E_s</td>
<td>10^3 kPa</td>
<td>5.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Unit of weight of soil</td>
<td>γ</td>
<td>18.0 kN/m3</td>
<td>2.5</td>
<td>Normal</td>
</tr>
<tr>
<td>Wheel load (Live load)</td>
<td>P_s</td>
<td>80.0 kPa</td>
<td>10.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Deflection coefficient</td>
<td>K_b</td>
<td>0.11</td>
<td>1.0</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Multiplying constant</td>
<td>k</td>
<td>2.0</td>
<td>10.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Exponential constant</td>
<td>n</td>
<td>0.3</td>
<td>5.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Initial thickness of pipe</td>
<td>t</td>
<td>0.021 m</td>
<td>1.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Height of the backfill</td>
<td>H</td>
<td>3.75 m</td>
<td>1.0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

COV = Coefficient of variation.
Table 2: Pipe wall thickness (m) with 10% inaccurate prediction for the case of deflection

<table>
<thead>
<tr>
<th>Failure group</th>
<th>0.013711</th>
<th>0.013717</th>
<th>0.013638</th>
<th>0.01367</th>
<th>0.012256</th>
<th>0.013659</th>
<th>0.013754</th>
<th>0.013056</th>
<th>0.014336</th>
<th>0.013639</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-failure group</td>
<td>0.011358</td>
<td>0.011579</td>
<td>0.0131</td>
<td>0.013198</td>
<td>0.013332</td>
<td>0.012482</td>
<td>0.012303</td>
<td>0.013431</td>
<td>0.012126</td>
<td>0.013077</td>
</tr>
</tbody>
</table>

Table 3: Pipe wall thickness (m) with 10% inaccurate prediction for the case of buckling

<table>
<thead>
<tr>
<th>Failure group</th>
<th>0.016711</th>
<th>0.016717</th>
<th>0.016638</th>
<th>0.016621</th>
<th>0.016749</th>
<th>0.016913</th>
<th>0.012942</th>
<th>0.016693</th>
<th>0.01667</th>
<th>0.01665</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-failure group</td>
<td>0.011358</td>
<td>0.011579</td>
<td>0.0131</td>
<td>0.013198</td>
<td>0.013332</td>
<td>0.012482</td>
<td>0.012303</td>
<td>0.013431</td>
<td>0.012126</td>
<td>0.013077</td>
</tr>
</tbody>
</table>

Preprint submitted to Journal of Risk and Reliability
Table 4: Pipe wall thickness (m) with 10% inaccurate prediction for the case of wall thrust

<table>
<thead>
<tr>
<th>Failure group</th>
<th>0.013711</th>
<th>0.013717</th>
<th>0.013638</th>
<th>0.01367</th>
<th>0.012256</th>
<th>0.013659</th>
<th>0.013754</th>
<th>0.012056</th>
<th>0.014336</th>
<th>0.013639</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.013621</td>
<td>0.013749</td>
<td>0.013913</td>
<td>0.012942</td>
<td>0.013693</td>
<td>0.01367</td>
<td>0.01365</td>
<td>0.01395</td>
<td>0.013921</td>
<td>0.0138</td>
</tr>
<tr>
<td></td>
<td>0.013989</td>
<td>0.01699</td>
<td>0.013639</td>
<td>0.012865</td>
<td>0.0138</td>
<td>0.01376</td>
<td>0.0139</td>
<td>0.01361</td>
<td>0.013821</td>
<td>0.013755</td>
</tr>
<tr>
<td></td>
<td>0.013976</td>
<td>0.013431</td>
<td>0.014138</td>
<td>0.013709</td>
<td>0.013895</td>
<td>0.013147</td>
<td>0.013159</td>
<td>0.012774</td>
<td>0.012002</td>
<td>0.012245</td>
</tr>
<tr>
<td></td>
<td>0.013983</td>
<td>0.013866</td>
<td>0.013934</td>
<td>0.017792</td>
<td>0.01386</td>
<td>0.016665</td>
<td>0.012867</td>
<td>0.01744</td>
<td>0.013876</td>
<td>0.016101</td>
</tr>
<tr>
<td></td>
<td>0.014237</td>
<td>0.013091</td>
<td>0.012728</td>
<td>0.011857</td>
<td>0.013177</td>
<td>0.013711</td>
<td>0.013231</td>
<td>0.013534</td>
<td>0.012028</td>
<td>0.014094</td>
</tr>
<tr>
<td></td>
<td>0.013576</td>
<td>0.01348</td>
<td>0.013257</td>
<td>0.013538</td>
<td>0.014696</td>
<td>0.012475</td>
<td>0.013428</td>
<td>0.012847</td>
<td>0.012283</td>
<td>0.011654</td>
</tr>
<tr>
<td></td>
<td>0.014351</td>
<td>0.013824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failure group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.011358</td>
<td>0.011579</td>
<td>0.0129</td>
<td>0.012198</td>
<td>0.013332</td>
<td>0.012482</td>
<td>0.012303</td>
<td>0.013431</td>
<td>0.012126</td>
<td>0.013077</td>
</tr>
<tr>
<td></td>
<td>0.012755</td>
<td>0.013135</td>
<td>0.012934</td>
<td>0.011323</td>
<td>0.012859</td>
<td>0.012523</td>
<td>0.01289</td>
<td>0.012035</td>
<td>0.012332</td>
<td>0.013018</td>
</tr>
<tr>
<td></td>
<td>0.012963</td>
<td>0.013181</td>
<td>0.012724</td>
<td>0.012456</td>
<td>0.012408</td>
<td>0.012732</td>
<td>0.012675</td>
<td>0.012753</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Pipe wall thickness (m) with 10% inaccurate prediction for the case of bending stress

<table>
<thead>
<tr>
<th>Failure group</th>
<th>0.013711</th>
<th>0.013717</th>
<th>0.013638</th>
<th>0.01367</th>
<th>0.011256</th>
<th>0.013659</th>
<th>0.013754</th>
<th>0.011056</th>
<th>0.014336</th>
<th>0.013639</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.013621</td>
<td>0.013749</td>
<td>0.013913</td>
<td>0.01142</td>
<td>0.013693</td>
<td>0.01367</td>
<td>0.01365</td>
<td>0.01395</td>
<td>0.013921</td>
<td>0.0138</td>
</tr>
<tr>
<td></td>
<td>0.013989</td>
<td>0.01699</td>
<td>0.013639</td>
<td>0.01165</td>
<td>0.0138</td>
<td>0.01376</td>
<td>0.0139</td>
<td>0.01361</td>
<td>0.013821</td>
<td>0.013755</td>
</tr>
<tr>
<td></td>
<td>0.013976</td>
<td>0.013431</td>
<td>0.014138</td>
<td>0.013709</td>
<td>0.01125</td>
<td>0.013147</td>
<td>0.013159</td>
<td>0.012774</td>
<td>0.012002</td>
<td>0.012245</td>
</tr>
<tr>
<td></td>
<td>0.013983</td>
<td>0.013866</td>
<td>0.013934</td>
<td>0.017792</td>
<td>0.01386</td>
<td>0.016665</td>
<td>0.012867</td>
<td>0.01744</td>
<td>0.013876</td>
<td>0.016101</td>
</tr>
<tr>
<td></td>
<td>0.014237</td>
<td>0.013091</td>
<td>0.012728</td>
<td>0.011857</td>
<td>0.013177</td>
<td>0.013711</td>
<td>0.013231</td>
<td>0.013534</td>
<td>0.012028</td>
<td>0.014094</td>
</tr>
<tr>
<td></td>
<td>0.013576</td>
<td>0.01348</td>
<td>0.013257</td>
<td>0.013538</td>
<td>0.014696</td>
<td>0.012475</td>
<td>0.013428</td>
<td>0.012847</td>
<td>0.012283</td>
<td>0.011654</td>
</tr>
<tr>
<td></td>
<td>0.012408</td>
<td>0.012732</td>
<td>0.012675</td>
<td>0.014351</td>
<td>0.012753</td>
<td>0.012963</td>
<td>0.013181</td>
<td>0.013035</td>
<td>0.013332</td>
<td></td>
</tr>
<tr>
<td>Non-failure group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.011358</td>
<td>0.011579</td>
<td>0.0131</td>
<td>0.011198</td>
<td>0.013332</td>
<td>0.011482</td>
<td>0.011303</td>
<td>0.011431</td>
<td>0.011126</td>
<td>0.011077</td>
</tr>
<tr>
<td></td>
<td>0.011755</td>
<td>0.011135</td>
<td>0.011934</td>
<td>0.011323</td>
<td>0.010859</td>
<td>0.011523</td>
<td>0.01189</td>
<td>0.013824</td>
<td>0.012724</td>
<td>0.012456</td>
</tr>
</tbody>
</table>
Table 6: Threshold value and area under empirical ROC curve

<table>
<thead>
<tr>
<th>Failure modes</th>
<th>Deflection</th>
<th>Buckling</th>
<th>Wall thrust</th>
<th>Bending stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable limit using pipeline design formula</td>
<td>0.0605 m</td>
<td>1023.8 kPa</td>
<td>5867 kPa</td>
<td>450000 kPa</td>
</tr>
<tr>
<td>Threshold wall thickness using pipeline design formula</td>
<td>0.0137 m</td>
<td>0.0171 m</td>
<td>0.0136 m</td>
<td>0.0132 m</td>
</tr>
<tr>
<td>Optimum threshold wall thickness from empirical ROC curve</td>
<td>0.01357 m</td>
<td>0.0166 m</td>
<td>0.013 m</td>
<td>0.0128 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area under empirical ROC curve with inaccurate prediction</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure modes</td>
<td>0.89</td>
<td>0.68</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.67</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>0.68</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>0.70</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 7: Area under NPI ROC curve

<table>
<thead>
<tr>
<th>% of inaccurate prediction</th>
<th>NPI Area</th>
<th>Failure modes</th>
<th>Deflection</th>
<th>Buckling</th>
<th>Wall thrust</th>
<th>Bending stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>AUC</td>
<td></td>
<td>0.92</td>
<td>0.86</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>AUC</td>
<td></td>
<td>0.88</td>
<td>0.81</td>
<td>0.78</td>
<td>0.87</td>
</tr>
<tr>
<td>20%</td>
<td>AUC</td>
<td></td>
<td>0.73</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>AUC</td>
<td></td>
<td>0.67</td>
<td>0.64</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>30%</td>
<td>AUC</td>
<td></td>
<td>0.60</td>
<td>0.61</td>
<td>0.60</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>AUC</td>
<td></td>
<td>0.54</td>
<td>0.58</td>
<td>0.56</td>
<td>0.54</td>
</tr>
</tbody>
</table>