Skip to main content

Research Repository

Advanced Search

A numerical approach to melting in warm subduction zones

Bouilhol, P.; Magni, V.; van Hunen, J.; Kaislaniemi, L.

A numerical approach to melting in warm subduction zones Thumbnail


Authors

P. Bouilhol

V. Magni

L. Kaislaniemi



Abstract

The complex feedback between dehydration and melting in hot subduction zones is quantitatively addressed in this study. We present an integrated numerical tool that combines a high-resolution thermo-mechanical subduction model with a thermodynamic database that allows modeling metamorphic devolatilization, and subsequent re-hydration and melting reactions. We apply this tool to quantify how the hydration state of a lithologically layered subducting slab varies during interaction with the hot mantle wedge and how this affects any melting taking place in the subducting crust or the overlying mantle wedge. Total crustal dehydration is achieved before any crustal melting can occur, even in very young subducting slabs. Significant oceanic crust melting is only achieved if the metamorphic fluids from the dehydrating underlying subducting slab mantle are fluxed through the dry eclogites. But our models further demonstrate that even if the oceanic crust can melt in these specific conditions, the preceding crustal dehydration will simultaneously result in extensive mantle wedge melting at lower pressures than for colder slabs. The significant mantle wedge melting implies that also for hot subduction zones, most of the melt feeding the overriding plate is of mantle origin.

Citation

Bouilhol, P., Magni, V., van Hunen, J., & Kaislaniemi, L. (2015). A numerical approach to melting in warm subduction zones. Earth and Planetary Science Letters, 411, 37-44. https://doi.org/10.1016/j.epsl.2014.11.043

Journal Article Type Article
Acceptance Date Nov 25, 2014
Online Publication Date Dec 12, 2014
Publication Date Feb 1, 2015
Deposit Date Dec 18, 2014
Publicly Available Date Mar 28, 2024
Journal Earth and Planetary Science Letters
Print ISSN 0012-821X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 411
Pages 37-44
DOI https://doi.org/10.1016/j.epsl.2014.11.043
Keywords Slab melting, Slab dehydration, Mantle wedge melting, Modeling, Thermodynamics.

Files





You might also like



Downloadable Citations