Skip to main content

Research Repository

Advanced Search

Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure

Yeates, A.R.; Hornig, G.; Welsch, B.T.

Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure Thumbnail


Authors

G. Hornig

B.T. Welsch



Abstract

Aims. We show how the build-up of magnetic gradients in the Sun’s corona may be inferred directly from photospheric velocity data. This enables computation of magnetic connectivity measures such as the squashing factor without recourse to magnetic field extrapolation. Methods. Assuming an ideal evolution in the corona, and an initially uniform magnetic field, the subsequent field line mapping is computed by integrating trajectories of the (time-dependent) horizontal photospheric velocity field. The method is applied to a 12 h high-resolution sequence of photospheric flows derived from Hinode/SOT magnetograms. Results. We find the generation of a network of quasi-separatrix layers in the magnetic field, which correspond to Lagrangian coherent structures in the photospheric velocity. The visual pattern of these structures arises primarily from the diverging part of the photospheric flow, hiding the effect of the rotational flow component: this is demonstrated by a simple analytical model of photospheric convection. We separate the diverging and rotational components from the observed flow and show qualitative agreement with purely diverging and rotational models respectively. Increasing the flow speeds in the model suggests that our observational results are likely to give a lower bound for the rate at which magnetic gradients are built up by real photospheric flows. Finally, we construct a hypothetical magnetic field with the inferred topology, that can be used for future investigations of reconnection and energy release.

Citation

Yeates, A., Hornig, G., & Welsch, B. (2012). Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure. Astronomy & Astrophysics, 539, https://doi.org/10.1051/0004-6361/201118278

Journal Article Type Article
Publication Date Mar 1, 2012
Deposit Date Mar 15, 2012
Publicly Available Date Mar 29, 2024
Journal Astronomy and astrophysics.
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 539
DOI https://doi.org/10.1051/0004-6361/201118278
Keywords Magnetic fields, Sun: photosphere, Sun: corona, Sun: magnetic topology

Files

Published Journal Article (1.3 Mb)
PDF

Copyright Statement
Reproduced with permission from Astronomy & Astrophysics, © ESO, 2012.




You might also like



Downloadable Citations