Skip to main content

Research Repository

Advanced Search

Simulations of galaxy formation in a Λ cold dark matter universe. I. Dynamical and photometric properties of a simulated disk galaxy

Abadi, M.G.; Navarro, J.F.; Steinmetz, M.; Eke, V.R.

Simulations of galaxy formation in a Λ cold dark matter universe. I. Dynamical and photometric properties of a simulated disk galaxy Thumbnail


Authors

M.G. Abadi

J.F. Navarro

M. Steinmetz



Abstract

We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition.

Citation

Abadi, M., Navarro, J., Steinmetz, M., & Eke, V. (2003). Simulations of galaxy formation in a Λ cold dark matter universe. I. Dynamical and photometric properties of a simulated disk galaxy. Astrophysical Journal, 591(2), 499-514. https://doi.org/10.1086/375512

Journal Article Type Article
Publication Date 2003-07
Deposit Date Jan 9, 2009
Publicly Available Date Aug 12, 2014
Journal Astrophysical Journal
Print ISSN 0004-637X
Electronic ISSN 1538-4357
Publisher American Astronomical Society
Peer Reviewed Peer Reviewed
Volume 591
Issue 2
Pages 499-514
DOI https://doi.org/10.1086/375512
Keywords Cosmology, Theory, Dark matter, Galaxies, Formation, Structure, Methods, Numerical.

Files

Published Journal Article (3.4 Mb)
PDF

Copyright Statement
© 2003 The American Astronomical Society. All rights reserved.





You might also like



Downloadable Citations