Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C-H Borylation.

Scott A. Sadler,† Andrew C. Hones,† Bryan Roberts‡ David Blakemore,§ Todd B. Marder∞,† and Patrick G. Steel†,†

† Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
‡ Astra Zeneca, Alderley Park, Macclesfield SK10 4TF
§ Pfizer-Neusentis, The Portway Building, Granta Park, Cambridge, CB21 6GS, UK
∞ Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.

Graphical Abstract

ABSTRACT: In the absence of a steric directing group iridium-catalyzed C-H borylation of N-protected indazoles occurs rapidly and selectively at C-3 and the resulting boronate esters can be utilized in a range of downstream conversions. The functional group tolerance of the iridium-catalyzed C-H borylation reaction enables simple and efficient multidirectional syntheses of substituted indazoles to be realized.

Organoboronic acids and esters are of great importance in organic, medicinal and material chemistry.† Reflecting this, methods for the preparation of functionalized boronic acids and their derivatives are of great interest. Although classically prepared via transmetallation and trapping with boron electrophiles, recent developments in boronate ester synthesis have focused on milder more functional group tolerant approaches. Foremost among these are metal catalyzed C-X and C-H borylation.2–5 Of these, the direct C-H borylation of aromatic C-H bonds catalyzed by boryl iridium complexes is particularly attractive as it enables late stage functionalization of molecules. However, many important basic heterocycles are not well tolerated, giving slow reactions with low conversions.6 These characteristics can be related to the ability for the basic nitrogen to coordinate to, and thus inhibit, the Ir-catalyst and the related presence of the proximal azinyl nitrogen lone pair which provides an inhibitory repulsive interaction with the developing negative charge of the ortho carbon during the C-H activation step, and also a low energy pathway for protodeboronation.7,8 We have recently demonstrated that the introduction of a strongly electron withdrawing group at the 2-position of a pyridine lowers the basicity of the azinyl nitrogen (pK_a pyridine 5.25, 2-chloropyridine 0.7, 2-fluoropyridine -0.44), facilitating borylation at the 6-position and providing
the resulting boronate ester with much enhanced stability (Figure 1).7 Other substituents can have a similar effect, with the presence of a second azinyl nitrogen atom also leading to lower pK\textsubscript{a} values and enhanced reactivity in the C-H borylation process (Figure 2). We then considered azole systems and noted that Harrity has previously demonstrated that 3-pyrazole boronate esters, in which there is a nitrogen atom adjacent to the azine moiety, are stable entities.9 In addition, Smith and Maleczka have shown that protected pyrazoles are viable substrates for borylation and, in these cases, reaction occurs exclusively at C-4, remote from the azinyl nitrogen.5e Consequently, reflecting their importance in a variety of medicinal chemistry applications, we became interested in the reactivity and selectivity of indazole borylation in which the NR group adjacent to the azinyl nitrogen reduces the basicity of the nitrogen atom (pK\textsubscript{a} indazole 1.25 cf. 2-methoxypyridine 3.3 and 2-chloropyridine 0.7). Prompted by a recent disclosure from a group at Syngenta,10 we now describe the development of simple, multi-directional syntheses of indazoles based on selective C-H borylation of this heterocycle.

Figure 1. C-H Borylation of 2-Fluoropyridines

![Figure 1](image)

Figure 2. pK\textsubscript{a} values for azinyl ring systems11

<table>
<thead>
<tr>
<th>Structure</th>
<th>pK\textsubscript{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Structure 1]</td>
<td>5.5</td>
</tr>
<tr>
<td>![Structure 2]</td>
<td>-0.4</td>
</tr>
<tr>
<td>![Structure 3]</td>
<td>2.3</td>
</tr>
<tr>
<td>![Structure 4]</td>
<td>1.1</td>
</tr>
<tr>
<td>![Structure 5]</td>
<td>0.37</td>
</tr>
<tr>
<td>![Structure 6]</td>
<td>2.5</td>
</tr>
<tr>
<td>![Structure 7]</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Our initial experiments explored the borylation of the parent indazole. Consistent with attempts to borylate other heterocycles which contain an unencumbered azinyl nitrogen, no reaction was observed. Smith and Maleczka have recently shown that the N-H group of various heterocycles can be temporarily protected by N-H borylation with HBpin.12 However, we were not able to achieve the borylation of indazole following this protocol. Consequently a series of different, less labile, nitrogen protecting groups were explored (Table 1). Borylation of 1-protected indazole with one equivalent of B\textsubscript{2}pin\textsubscript{2} afforded the 3-borylated product, as confirmed by a distinct shift of the 4-H resonance to higher frequency in the 1H NMR spectrum. Significantly, and consistent with our previous
results, more strongly electron-withdrawing protecting groups led to faster reactions and higher conversions. Somewhat surprisingly, borylation of the corresponding N2-protected indazoles also proceeds exclusively

Table 1 Borylation of N-protected indazoles

![Image](image-url)

<table>
<thead>
<tr>
<th>Entry</th>
<th>SM</th>
<th>Time (h)</th>
<th>Convn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>24</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td>24</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>24</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td>1</td>
<td>100(62)</td>
</tr>
<tr>
<td>8</td>
<td>2c</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>2d</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>2e</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>2f</td>
<td>0.25</td>
<td>100</td>
</tr>
</tbody>
</table>

R = a H; b Boc; c Me; d THP; e SEM; f (3,5)-Me₂C₆H₄CH₂; g Ms

a. SEM = trimethylsilyloxyethoxy methoxy; b. Determined by 1H NMR; c. Isolated yield

at the 3-position even in the presence of relatively bulky benzyl or THP protecting groups at N-2 (Table 1, entries 8-11). The higher reactivity of these isomers was most notably seen with complete borylation of the bulky 3,5-dimethylbenzyl derivative being observed in minutes in contrast to the many hours required for the analogous 1-N protected isomer. We attribute this higher reactivity of the 2-protected isomers to the fact that the site of C-H activation is no longer adjacent to an azinyl lone pair. This also mirrors the more rapid reaction of a pyrrole when compared with a 2-substituted pyridine and the preference for C-H borylation in a pyrazole to occur at C-4, not C-3. Most of these α-azinyl boronate esters, although considerably more stable than simple 2-pyridyl boronates, proved to be prone to protodeboronation, and attempts to purify them using column chromatography were complicated by partial reversion to the starting indazole. The incorporation of a more electron deficient sulfonyl group (Table 1 entry 7) overcame this challenge and these boronate esters were amenable to standard chromatographic purification. Reflecting this decomposition pathway, for all other substrates, following characterization of the crude borylation reaction mixture by a combination of NMR spectroscopy and GCMS, each indazole boronate ester was subjected to a standard Suzuki-Miyaura cross coupling reaction For the 1-protected substrates CuCl
was added to enhance the rate of transmetallation and thus reduce protodeborylation of the α-azinyl boronate.13

However, for the 2-protected substrates, presumably reflecting the fact that these are not α-azinyl boronates, this proved not to have any significant effect. Given that C-H borylation is an ideal strategy for late stage functionalization we opted to use the indazole as the limiting reagent and adopted a standard reaction stoichiometry using one equivalent of aryl electrophile with respect to starting indazole. Under these conditions, the desired 3-arylindazoles could be obtained in moderate to good overall yields (Table 2) from both N-1 and N-2 protected indazoles. Although cross-coupling of simple aryl chlorides proved not to be viable under these standard cross-coupling conditions, a range of aryl and heteroaryl iodides and bromides, both electron rich and electron poor, proved to be effective partners. Importantly, the

\textbf{Table 2:} Sequential one-pot Ir-catalyzed C-H borylation Suzuki-Miyaura cross-coupling reaction of N-protected indazoles 1 and 2a

\[
\begin{array}{cccc}
<table>
<thead>
<tr>
<th>Entry</th>
<th>Indazoleb</th>
<th>(5)</th>
<th>Product Yield</th>
<th>Entry</th>
<th>Indazoleb</th>
<th>(5)</th>
<th>Product Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1c</td>
<td>5a</td>
<td>I</td>
<td>6ca</td>
<td>43</td>
<td>7a</td>
<td>1e</td>
</tr>
<tr>
<td>2a</td>
<td>1d</td>
<td>5b</td>
<td>I</td>
<td>6db</td>
<td>50</td>
<td>8</td>
<td>2c</td>
</tr>
<tr>
<td>3a</td>
<td>1d</td>
<td>5b</td>
<td>Cl</td>
<td>-</td>
<td>0</td>
<td>9</td>
<td>2e</td>
</tr>
<tr>
<td>4a</td>
<td>1d</td>
<td>5c</td>
<td>Br</td>
<td>6dc</td>
<td>42</td>
<td>10</td>
<td>2e</td>
</tr>
<tr>
<td>5a</td>
<td>1d</td>
<td>5d</td>
<td>I</td>
<td>6dd</td>
<td>42</td>
<td>11</td>
<td>2e</td>
</tr>
<tr>
<td>6a</td>
<td>1d</td>
<td>5e</td>
<td>Br</td>
<td>6de</td>
<td>48</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
\end{array}
\]

a 1 eq CuCl added. For structures of 1c-1e, 2c & 2e see Table 1. b Yield of purified isolated product based on starting indazole 1 or 2

The tolerance of the Ir-catalyzed C-H borylation sequence enables an alternative approach to be employed and permits the easy generation of multi-substituted indazole cores to be established (Scheme 1). For example, borylation of 7-bromo-2-(2'-trimethylsilyl)ethoxymethyl) indazole 10a occurs selectively at the 3-position to afford boronate ester 11a. With this product it is possible to cross-couple the boronate ester selectively with aryl iodides and more reactive heteroaryl bromides while leaving the carbocyclic bromide available for subsequent transformations. Whilst initial attempts using Pd(dppf)Cl\textsubscript{2} led to small but detectable amounts of homocoupling products,
using Pd(Ph₃P)₄ as the catalyst precursor led to exclusive formation of the desired 3-aryl-bromindazole 12 with no evidence for oligomerization of the bifunctional indazole being detected in the crude reaction mixture. A subsequent second cross-coupling reaction then enables differentially 3,7-disubstituted indazoles to be accessed. Similar sequences are possible with the isomeric bromo-indazoles 10b-10d. As with other C-H borylation processes, the regiochemistry of the borylation reaction is strongly influenced by steric parameters, and a bromine substituent at C-4 is sufficient to inhibit C-3 borylation and result in selective borylation at C-6. Sequential Suzuki-Miyaura cross-coupling reactions, as described above, affords 4,6-disubstituted indazoles (14e). In an alternative second-stage of this sequence, reduction of the C-Br bond using ammonium formate affords the formal product of selective indazole C-6 borylation and cross-coupling (Scheme 2). Borylation of 2e and 10a with an excess of B₂pin₂ afforded the diborylated indazoles 16 and 17, respectively (Scheme 3). Disappointingly, attempts to achieve site selective Suzuki-Miyaura coupling reactions with these polyborylated products proved to be challenging, leading to complex

Scheme 1. Multi-substituted indazoles through sequential borylation and cross-coupling
mixtures of mono and bis arylated products. However, exploiting the greater lability towards protodeborylation of the 3-boronate ester, simple treatment of the crude reaction mixture with aqueous KOH selectively afforded the C-5 borylated indazole 17. Without additional purification, this compound could be selectively cross-coupled with an aryl iodide providing entry to 5,7-disubstituted indazoles 19.
Scheme 2. Selective synthesis of C-6 substituted indazoles

Scheme 3. Selective protodeborylation of poly borylated indazoles

In summary, provided coordination of the azinyl nitrogen to the iridium catalyst is inhibited, the borylation of N-protected indazoles proceeds readily to afford selectively the corresponding 3-boryl indazole. The presence of the second (azole) nitrogen reduces the basicity of the azinyl nitrogen atom facilitating the isolation of these boronate esters to the extent that when an electron withdrawing protecting group is employed the α-azinyl boronate ester is stable to column chromatography. Moreover, in spite of the increased steric demand, but consistent with a lack of the inhibitory effect of an azinyl lone pair ortho to the site of C-H activation, borylation of N-2 protected indazoles occurs significantly faster than the equivalent N-1 protected analogue. The resulting borylated indazoles are viable substrates for a variety of subsequent transformations providing easy routes for late stage modification of this
valuable heterocycle. In particular, the functional group tolerance of C-H borylation enables a halogen to serve as both a blocking and directing group providing access to regiocontrolled multi-substituted indazoles.

Experimental Section

“One-pot” C-H borylation/Suzuki-Miyaura Cross-Coupling Sequence of protected 1H and 2H-indazoles In a glovebox, a thick-walled microwave synthesis vial was charged with the corresponding indazole (1 eq.) (vial A). A separate vial was charged with [Ir(COD)OMe]$_2$ (1.5 mol%), dtbpy (3.0 mol%) and B$_2$pin$_2$ (0.7 eq.) before MTBE was added. Once homogenous, this solution was added to vial A. The vial was removed from the glovebox and heated at 80 °C for 1 h. Upon completion the volatiles were removed *in vacuo* to afford the crude boronate product. Palladium catalyst 10 mol%, base (2 eq) and aryl halide (see schemes for details; 1.1 eq) were added and the vial was sealed and purged with 3 evacuation/refill (Ar) cycles. Solvent (DMF or DMAC) (5 mL) was added and the mixture was heated at 100 °C for 1 h in a microwave reactor. The reaction was diluted with water (10 mL) and extracted with Et$_2$O (3 x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO$_4$, filtered through celite and concentrated in vacuo to afford the crude product. Purification was achieved by flash column chromatography using the stated solvent system.

Suzuki-Miyaura Cross-coupling of 3-Aryl-bromoindazoles A 5ml microwave vial was charged with bromoindazole (1 eq.), Pd(dppf)Cl$_2$ (10mol%), Na$_2$CO$_3$ (3 equivalents) and aryl boronic acid (2 equivalents). The vial was evacuated and placed under N$_2$ with three evacuation/refill cycles. 3.5 ml of degassed 6:1 dioxane/H$_2$O was added. The mixture was heated to 105 °C for 2 hours. The reaction mixture was diluted with H$_2$O (30 ml) and extracted with Et$_2$O (3 x 20 ml). The combined organic layers were dried over MgSO$_4$, filtered through celite and concentrated. The product was then purified by column chromatography.

1-(Methanesulfonyl)-3-(Bpin)-1H-indazole (3g) In a glovebox, a thick-walled microwave synthesis vial was charged with the indazole (0.15 g, 0.8 mmol) (vial A). A separate vial was charged with [Ir(COD)OMe]$_2$ (1.5 mol%), dtbpy (3.0 mol%) and B$_2$pin$_2$ (0.7 eq.) before MTBE was added. Once homogenous, this solution was added to vial A. The vial was removed from the glovebox and heated at 80 °C for 1 h after which time the volatiles were removed in vacuo and the crude boronate ester adsorbed onto silica. Purification by flash column chromatography (0-5% MeOH in CHCl$_3$) afforded 3g as an off-white solid. (0.154 g, 62%) $\delta$$_H$(400 MHz, CDCl$_3$): 8.13 (d, J = 8.0 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.53 (m, 1H), 7.38 (m, 1H), 3.33 (s, 3H), 1.42 (s, 12H); $\delta$$_C$(176 MHz, CDCl$_3$): 140.2, 130.5, 129.0, 124.3, 123.2, 112.8, 85.0, 41.5, 25.0; $\delta$$_B$(128 MHz, CDCl$_3$): 28.9 (s (br));
1-methyl-3-phenyl-1H-indazole (6ca) Isolated following purification by chromatography (5% EtOAc in Hexane) as a pale yellow oil (0.081 g, 43%). δH (700 MHz, CDCl3): 8.03 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.6 Hz, 2H), 7.42 (m, 3H), 7.22 (ddd, J = 8.0, 5.4, 2.2 Hz, 1H), 4.14 (s, 3H); δC (176 MHz, CDCl3): 143.9, 141.6, 133.8, 128.9, 127.9, 127.5, 126.4, 121.8, 121.5, 121.0, 109.3, 35.7; m/z (GC/MS, EI): 208 [M]+, 180, 131 [M–C6H5]+, 104, 77 [C6H5]+, 51. Accurate Mass (ASAP): C14H12N2 requires M, 208.1000, found [M]+ 208.0995.

1-(tetrahydro-2H-pyran-2''-yl)-3-(4''-(methoxycarbonyl)phenyl)-1H-indazole (6db) Isolated following purification by chromatography (0-25% EtOAc in hexane) as a white powder (0.168 g, 50%). δH (700 MHz) 8.16 (d, J = 8.4 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 5.80 (dt, J = 9.1 Hz, 3.0 Hz, 1H), 4.07 (dt, J = 10.4 Hz, 3.5 Hz, 1H), 3.95 (s, 3H), 3.78 (td, J = 10.4 Hz, 2.5 Hz, 1H), 2.67 (m, 1H), 2.20 (m, 1H), 2.12 (m, 1H), 1.79 (m, 2H), 1.68 (m, 1H). δC (176 MHz) 170.0, 143.3, 141.0, 138.2, 130.0, 129.3, 127.3, 126.6, 122.5, 122.0, 121.1, 110.7, 85.6, 67.6, 52.2, 29.3, 25.2, 22.5; v_max (ATR) 2940, 2843, 1716, 1609, 1432, 1279, 1075, 1038, 748, 696 cm⁻¹; m/z (ASAP) 337.1 [MH]+, 305.1 [M–OMe]+, 271.1, 253.1 [MH–THP]⁺. Accurate Mass (ASAP) C29H22N2O3 requires M, 337.1552, found [M+H]⁺ 337.1540.

1'-tetrahydropyran-2''-yl-3-(4'-(trifluoromethyl)benzene)-1H-indazole (6dc) Isolated following purification by chromatography (0-3% Et₂O in Hexane) as an off white solid (0.190 g, 42%). δH (600 MHz, CDCl3): 8.11 (d, J = 8.2 Hz, 2H), 7.99 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 5.81 (dd, J = 9.3, 2.7 Hz, 1H), 4.07 (m, 1H), 3.79 (m, 1H), 2.68 (m, 1H), 2.21 (m, 1H), 2.13 (m, 1H), 1.79 (m, 2H), 1.69 (m, 1H); δC (151 MHz, CDCl3): 143.2, 141.2, 137.4, 129.9 (q, J = 31.7 Hz), 127.9, 126.9, 125.8 (q, J = 3.0 Hz), 124.3 (q, J = 273.3 Hz), 122.5, 122.3, 121.1, 110.8, 85.7, 67.7, 29.5, 25.3, 22.7; δF (376 MHz, CDCl3): -62.5; v_max (ATR) 2948, 2866, 1615, 1332, 1066, 744 cm⁻¹; m/z (GCMS, EI): 346 [MH]+ 10%, 262 [M-THP]+ 100%; Accurate Mass (ASAP) C19H18F3N2O requires M, 347.1371, found [M+H]+ 347.1363.

3-(4''-methoxyphenyl)-1-(tetrahydro-2H-pyran-2''-yl)-1H-indazole (6dd) Isolated following purification by chromatography (0-40% Et₂O in hexane) as a white powder (0.127 g, 42%). δH (700 MHz, CDCl3) 7.96 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.40 (t, J = 8.1 Hz, 1H), 7.21 (t, J = 8.1 Hz, 1H), 7.03 (d, J = 8.7 Hz, 2H), 5.76 (dd, J = 9.4 Hz, 2.8 Hz, 1H), 4.07 (d, J = 11.1 Hz, 1H), 3.87 (s, 3H), 3.76 (td, J = 11.1 Hz, 2.6 Hz, 1H). 1H, 3.06 (m, 1H), 2.79 (m, 1H), 2.10 (m, 1H), 1.83 (m, 1H), 1.48 (m, 1H), 1.30 (m, 1H), 0.85 (m, 1H). δC (176 MHz, CDCl3): 143.2, 141.2, 137.4, 129.9 (q, J = 31.7 Hz), 127.9, 126.9, 125.8 (q, J = 3.0 Hz), 124.3 (q, J = 273.3 Hz), 122.5, 122.3, 121.1, 110.8, 85.7, 67.7, 29.5, 25.3, 22.7; δF (376 MHz, CDCl3): -62.5; v_max (ATR) 2948, 2866, 1615, 1332, 1066, 744 cm⁻¹; m/z (GCMS, EI): 346 [MH]+ 10%, 262 [M-THP]+ 100%; Accurate Mass (ASAP) C19H18F3N2O requires M, 347.1371, found [M+H]+ 347.1363.
1-Tetrahydropyran-2'-yl-3-pyridin-2''-yl-1H-indazole (6de) Isolated following purification by chromatography (0-10% EtOAc in Hexane) as a colourless oil (0.15 g, 48%). δ_T (700 MHz, CDCl$_3$): 8.74 (d, J = 4.7 Hz, 1H), 8.67 (d, J = 8 Hz, 1H), 8.23 (d, J = 7.9 Hz, 1H), 7.76 (m, 1H), 7.62 (d, J = 8 Hz, 1H), 7.43 (t, J = 8 Hz, 1H), 7.29 (t, J = 8 Hz, 1H), 7.24 (m, 1H), 5.81 (dd, J = 9.2, 2.7 Hz, 1H), 4.07 (m, 1H), 3.78 (m, 1H), 2.68 (m, 1H), 2.21 (m, 1H), 2.12 (m, 1H), 1.79 (m, 2H), 1.69 (m, 1H); δ_C (176 MHz, CDCl$_3$): 153.7, 149.3, 143.6, 141.2, 136.4, 126.8, 123.9, 123.2, 122.4, 122.3, 121.4, 110.1, 85.7, 67.6, 29.5, 25.3, 22.7; ν_{max} (ATR) 2942, 1592, 1562, 1510, 1490, 1459, 1442, 1378, 1315, 1279, 1235, 1206, 1172, 1148, 1112, 1080, 1040, 1003, 906, 876, 795 cm$^{-1}$; Accurate Mass (ASAP) C$_{13}$H$_{19}$N$_2$O$_2$ requires M, 309.1603, found [M+H]$^+$ 309.1597.

3-(Thiophen-3'-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-indazole (6ef) Isolated following purification by chromatography (0-40% Et$_2$O in hexane) as a yellow oil (0.106 g, 32%). δ_T (700 MHz, CDCl$_3$) 7.99 (d, J = 8.2 Hz, 1H), 7.82 (m, 1H), 7.72 (d, J = 5.4 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H) 7.46 (m, 1H, 5'-H), 7.45 (m, 1H), 7.27 (t, J = 8.2 Hz, 1H), 5.77 (s, 2H), 3.61 (t, J = 8.1 Hz, 2H), 0.91 (t, J = 8.1 Hz, 2H), -0.06 (s, 9H). δ_C (176 MHz, CDCl$_3$) 141.3, 141.2, 134.6, 127.1, 126.9, 126.1, 122.7, 122.3, 121.8, 121.3, 110.1, 77.8, 66.6, 17.9, -1.3; ν_{max} (ATR) 2949, 2893, 1614, 1075, 856, 832, 741, 674 cm$^{-1}$; m/z (GCMS, EI) 330 [M]$^+$ 60%, 257 [M-(CH$_3$)$_3$Si]$^+$ 50%, 214 [MH-(CH$_3$)$_3$SiCH$_2$CH$_2$O]$^+$ 100%, 128 [MH-SEM]$^+$ 20%, 73 [(CH$_3$)$_3$Si]$^+$ 35%; Accurate Mass (ASAP) C$_{17}$H$_{25}$N$_2$OSSi requires M, 331.1300, found [M+H]$^+$ 331.1302.

2-methyl-3-phenyl-2H-indazole (7ca). Isolated following purification by chromatography (0-10% Et$_2$O in Hexane) as a pale yellow oil (0.064 g, 44%). δ_T (700 MHz, CDCl$_3$): 7.71 (d, J = 8.7 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.55 (m, 4H), 7.50 (m, 1H), 7.32 (m, 1H), 7.08 (m, 1H), 4.19 (s, 3H); δ_C (176 MHz, CDCl$_3$): 148.3, 136.2, 129.9, 129.8, 129.2, 128.9, 126.4, 122.0, 121.4, 120.3, 117.2, 38.7; m/z (GC/MS, EI): 208 [M]$^+$, 180, 165, 104, 77 [C$_9$H$_7$]$^+$. ν_{max} (ATR) 2363, 1500, 1361, 1287, 1009, 904 cm$^{-1}$; Accurate Mass (ASAP) C$_{14}$H$_{13}$N$_2$ requires M, 209.1077, found [M+H]$^+$ 209.1079.

2-((2-(trimethylsilyl)ethoxy)methyl)-3-(4-(methoxycarbonyl)phenyl)-2H-indazole (7eb) Isolated following purification by chromatography (0-10% EtOAc in Hexane) as a colorless oil (0.21 g, 51%). δ_T (700 MHz, CDCl$_3$): 8.22 (m,
2-(2-(2-(trimethylsilyl)ethoxy)methyl)-3-pyridin-2'-yl-2H-indazole (7ee) Isolated following purification by chromatography (20% EtO in Hexanes) as a colourless oil (0.16 g, 47%). δH (700 MHz, CDCl3): 8.80 (m, 1H), 7.88 (s, 3H), 7.79 (d, J = 8.7 Hz, 1H), 7.34 (m, 2H), 7.18 (m, 1H), 6.15 (s, 2H), 3.68 (t, J = 8.3 Hz, 2H), 0.86 (t, J = 8.3 Hz, 2H), −0.10 (s, 9H); δC (176 MHz, CDCl3): 150.3, 149.5, 148.3, 137.0, 134.4, 126.8, 124.4, 123.4, 122.7, 121.7, 120.8, 118.4, 80.3, 67.4, 18.0, −1.4; vmax (ATR) 2953, 1586, 1490, 1459, 1364, 1306, 1249, 1152, 1088, 1021, 906, 859, 835, 786 cm⁻¹; Accurate Mass (ASAP) C21H27N2O3Si requires M, 383.1791, found [M+H]+ 383.1803.

2-(2-(Trimethylsilyl)ethoxy)methyl)3-thiophen-3'-yl-2H-indazole (7ef) Isolated following purification by chromatography (0-5% EtOAc in Hexane) as a pale yellow oil (0.13 g, 41%). δH (700 MHz, CDCl3): 7.85 (m, 1H), 7.73 (m, 2H), 7.58 (m, 1H), 7.52 (m, 1H), 7.33 (m, 1H), 7.12 (m, 1H), 5.73 (s, 2H), 3.82 (t, J = 8.3 Hz, 2H), 0.96 (t, J = 8.3 Hz, 2H), −0.02 (m, 9H); δC (176 MHz, CDCl3): 148.1, 132.4, 129.8, 128.3, 127.0, 126.7, 125.8, 122.4, 121.2, 120.9, 118.0, 79.6, 67.6, 18.2, −1.3; vmax (ATR) 2953, 2224, 1627, 1478, 1408, 1293, 1267, 1249, 1080, 1021, 907, 856, 834, 790 cm⁻¹; Accurate Mass (ASAP) C18H26N2OSSi requires M, 331.1300, found [M+H]+ 331.1266.

2-(2-(trimethylsilyl)ethoxy)methyl)-3-(4′-(methoxycarbonyl)phenyl)-7-bromo-2H-indazole (12a)

Isolated following purification by chromatography (0-30% EtO in hexane) as a white powder (0.198g, 43%). δH (700 MHz, CDCl3) 8.22 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 7.3 Hz, 1H), 7.00 (dd, J = 8.4 Hz, 7.3 Hz, 1H), 5.74 (s, 2H), 3.97 (s, 3H), 3.88 (t, J = 8.3 Hz, 2H), 0.95 (t, J = 8.3 Hz, 2H), -0.01 (s, 9H), δC (176MHz, CDCl3) 166.5, 146.8, 137.1, 133.5, 130.5, 130.2, 129.7, 129.6, 123.5, 122.2, 119.9, 111.7, 79.5, 67.7, 52.4, 17.9, -1.4; vmax (ATR) 326, 2942, 2894, 1649, 1576, 1278, 1228, 1082, 1038, 744, 684 cm⁻¹; m/z (ASAP) 463.1 [M⁺BrH]+, 461.1 [M⁺79BrH]+, 403.0 [M⁺78Br]-CO₂Me]+, 401.0 [M⁺79Br]-CO₂Me]+; Accurate Mass (ASAP) C21H26N2O2Br requires M, 461.0896, found [M+H]+ 461.0911.

2-(2-(Trimethylsilyl)ethoxymethyl)-3-(4′-methoxycarbonyl)-7-(furan-3'-yl)-2H-indazole (14a) Isolated following purification by chromatography (0-20% EtO in hexane) as a yellow oil (0.127g, 63%) δH (700 MHz, CDCl3) 8.64 (dd, J = 1.5 Hz, 0.6 Hz, 1H), 8.22 (d, J = 8.6 Hz, 2H), 7.86 (d, J = 8.6 Hz, 2H), 7.57 (dd, J = 8.5 Hz, 0.8 Hz, 1H), 7.00 (dd, J = 8.4 Hz, 7.3 Hz, 1H), 5.74 (s, 2H), 3.97 (s, 3H), 3.88 (t, J = 8.3 Hz, 2H), 0.95 (t, J = 8.3 Hz, 2H), -0.01 (s, 9H), δC (176MHz, CDCl3) 166.5, 146.8, 137.1, 133.5, 130.5, 130.2, 129.7, 129.6, 123.5, 122.2, 119.9, 111.7, 79.5, 67.7, 52.4, 17.9, -1.4; vmax (ATR) 907, 856, 834, 790 cm⁻¹; Accurate Mass (ASAP) C21H26N2O3Si requires M, 461.0896, found [M+H]+ 461.0911.
7.53 (t, J = 1.5 Hz, 1H), 7.51 (dd, J = 6.9 Hz, 0.8 Hz, 1H), 7.18 (dd, J = 8.5 Hz, 6.9 Hz, 1H), 7.01 (dd, J = 1.5 Hz, 0.6 Hz, 1H), 5.74 (s, 2H), 3.97 (s, 3H), 3.94 (t, J = 8.3 Hz, 2H), 1.00 (t, J = 8.3 Hz, 2H), 0.00 (s, 9H), δ_c (176 MHz, CDCl_3) 166.6, 145.9, 142.8, 142.5, 135.7, 134.0, 130.2, 130.1, 129.7, 123.2, 123.0, 122.5, 122.2, 121.9, 118.8, 108.4, 79.4, 67.8, 52.3, 18.0, -1.3; ν_max (ATR) 1721, 1610, 1435, 1202, 1085, 1001, 835, 751 cm⁻¹; m/z (ASAP) 449.2 [MH]^+, 421.1 [MH-OMe]^+, 391.1 [MH-CO₂Me]^+, 331.1 [MH-(Me₃Si(CH₂)₂O)]^+; Accurate Mass (ASAP) C_{25}H_{28}N₂O₄Si requires M, 448.1818, found [M]^+ 448.1808.

6-Bromo-2-((2-(trimethylsilyl)ethoxy)methyl)-3-pyridin-2'-yl-2H-indazole (12b) Isolated following purification by chromatography (15% EtOAc in Hexanes) as a pale yellow oil (179 mg, 52%). δ_H (700 MHz, CDCl_3): 8.80 (d, J = 5.4 Hz, 1H), 7.95 (s, 1H), 7.87 (m, 2H), 7.79 (d, J = 8.9 Hz, 1H), 7.35 (t, J = 5.4 Hz, 1H), 7.24 (d, J = 8.9 Hz, 1H), 6.08 (s, 2H) 3.68 (t, J = 8.3 Hz, 2H), 0.87 (t, J = 8.3 Hz, 2H), −0.09 (s, 9H); δ_c (176 MHz, CDCl_3): 150.4, 148.9, 148.8, 137.2, 135.1, 127.1, 124.4, 123.1, 122.5, 120.9, 120.7, 120.3, 80.3, 67.6, 18.0, -1.3; ν_max (ATR) 2951, 1584, 1470, 1244, 1092, 1014, 908, 832; Accurate Mass (ASAP) C_{18}H_{23}BrN₂O₃Si requires M, 404.0789, found [M+H]^+ 404.0794.

2-((2-(trimethylsilyl)ethoxy)methyl)-3-pyridin-2'-yl-6-(4'-(methoxycarbonyl)phenyl)-2H-indazole (14b)

Isolated following purification by chromatography (0-20% EtOAc in Hexanes) to give 14b (137 mg, 76%), as an off-white solid. δ_H (700 MHz, CDCl_3): 8.82 (d, J = 4.5 Hz, 1H), 8.14 (d, J = 8.3 Hz, 2H), 8.02 (s, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.91 (m, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.3 Hz, 1H), 7.35 (ddd, J = 6.6, 4.5, 1.4 Hz, 1H), 6.16 (s, 2H), 3.95 (s, 3H), 3.71 (t, J = 8.3 Hz, 2H), 0.88 (t, J = 8.3 Hz, 2H), −0.09 (s, 9H); δ_c (176 MHz, CDCl_3): 167.1, 150.4, 149.3, 148.6, 146.1, 138.7, 137.1, 134.6, 130.3, 129.1, 127.4, 124.4, 123.6, 122.9, 121.6, 121.4, 116.7, 80.4, 67.5, 52.3, 18.0, -1.3; ν_max (ATR) 2949, 1719, 1607, 1536, 1478, 1280, 1102 cm⁻¹; Accurate Mass (ASAP) C_{28}H_{30}N₃O₃Si requires 460.2056, found [M+H]^+ 460.2046.

2-((2-(trimethylsilyl)oxymethyl)-3-(4'-methoxycarbonylphenyl)-5-bromo-2H-indazole (12c) Isolated following purification by chromatography (0-30% Et₂O in hexane) as a yellow oil (0.198g, 43%). δ_H (700 MHz, CDCl_3) 8.23 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 9.0 Hz, 1H), 7.70 (s, 1H), 7.51 (d, J = 9.0 Hz, 1H), 5.68 (s, 2H), 3.97 (s, 3H), 3.84 (t, J = 8.4 Hz, 2H), 0.95 (t, J = 8.4 Hz, 2H), 0.02 (s, 9H); δ_c (176 MHz, CDCl_3) 166.5, 135.7, 133.8, 130.2, 130.1, 129.6, 127.3, 126.7, 126.6, 121.7, 118.6, 116.0, 79.5, 67.6, 52.2, 18.0, -1.4; ν_max (ATR) 2953, 1764, 1610, 1436, 1201, 1093, 860, 836, 706 cm⁻¹; m/z (ASAP) 463.1 [M(⁸¹Br)H]^+, 461.1 [M(⁷⁹Br)H]^+, 433.1 [MH-OMe]^+, 403.0 [MH-CO₂Me]^+, 376.0 [MH-(Me₃SiCH₂)]^+; Accurate Mass (ASAP) C_{21}H_{28}BrN₂O₃Si requires M, 461.0896, found [M+H]^+ 461.0898.
2-(2-(Trimethylsilyl)ethoxymethyl)-3-(4′-methoxycarbonylphenyl)-5-(furan-3′-yl)-2H-indazole (14c) Isolated following purification by chromatography (0-25% Et₂O in hexane) as a yellow oil (64mg, 72%).

δ_H (700 MHz, CDCl₃) 8.23 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 7.76 (dd, J = 9.0 Hz, 1.2 Hz, 1H), 7.74 (t, J = 1.3 Hz, 1H), 7.70 (t, J = 1.2 Hz, 1H)), 7.51 (dd, J = 9.0Hz, 1.2 Hz, 1H), 7.47 (t, J = 1.3 Hz, 1H), 6.71 (m, 1H), 5.68 (s, 2H), 3.97 (s, 3H), 3.85 (t, J = 8.3 Hz, 2H), 0.96 (t, J = 8.3 Hz, 2H), -0.02 (s, 9H), δ_C (176 MHz, CDCl₃) 166.6, 147.6, 143.7, 138.4, 135.7, 133.9, 130.2, 130.1, 129.6, 127.3, 126.8, 126.6, 121.7, 118.6, 116.1, 108.8, 79.5, 67.8, 52.3, 17.9, -1.3; ν_max (ATR) 2953, 2918, 1764, 1610, 1457, 1200, 1089, 861, 835 cm⁻¹; m/z (ASAP) 449.2 [M]+, 391.1 [MH-CO₂Me]+, 331.1 [M-(Me₃Si(CH₂)₂O)]⁺, 287.1 [M-(Me₃Si(CH₂)OCH₂)]⁺; Accurate Mass (ASAP) C₂₅H₂₉N₂O₄Si requires M, 449.1897, found [M+H]+ 449.1889.

2-(2-(Trimethylsilyl)ethoxymethyl)-3-(pyrid-2′-yl)-5-bromoindazole (12d) Isolated following purification by chromatography (0-50% Et₂O in hexane) as a yellow oil (0.141g, 35%). δ_H (700 MHz, CDCl₃) 8.80 (m, 1H, 6′-H), 8.08 (dd, J = 1.8Hz, 0.8 Hz, 1H), 7.88 (m, 1H), 7.86 (m, 1H), 7.65 (dd, J = 9.2 Hz, 0.8 Hz, 1H), 7.39 (dd, J = 9.2 Hz, 1.8 Hz, 1H), 7.34 (m, 1H), 6.08 (s, 2H), 3.67 (t, J = 8.3 Hz, 2H), 0.86 (t, J = 8.3 Hz, 2H), -0.10 (s, 9H), δ_C (176 MHz, CDCl₃) 150.2, 148.7, 146.4, 137.0, 133.9, 130.3, 124.2, 123.1, 122.9, 122.7, 119.9, 116.9, 80.2, 67.3, 17.7, -1.6; ν_max (ATR) 2969, 1365, 1217, 908, 725 cm⁻¹; m/z (ASAP) 406.1 [M⁺(¹⁸Br)H]+, 404.1 [M⁺(⁷⁹Br)H]+, 287.0 [M+H-(Me₃Si(CH₂)₂O)]⁺; Accurate Mass (ASAP) C₁₉H₂₃BrN₃O₂Si requires M, 404.0794, found [M+H]+ 404.0782.

2-(2-Trimethylsilyl)ethoxymethyl)-3-(pyrid-2′-yl)-5-(4′-(trifluoromethyl)phenyl)-2H-indazole (14d) Isolated following purification by chromatography (0-50% Et₂O in hexane) as a yellow oil (80mg, 68%). δ_H (700 MHz, CDCl₃) 8.82 (m, 1H, 6′-H), 8.10 (dd, J = 1.7 Hz, 0.8 Hz, 1H), 7.92 (dt, J = 7.8 Hz, 1.2 Hz, 1H), 7.89 (td, J = 7.8 Hz, 1.8 Hz, 1H), 7.87 (dd, J = 9.0 Hz, 0.8 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.60 (dd, J = 9.0 Hz, 1.7 Hz, 1H), 7.35 (m, 1H), 6.12 (s, 2H), 3.72 (t, J = 8.2 Hz, 2H), 0.88 (t, J = 8.2 Hz, 2H), -0.09 (s, 9H), δ_C (176 MHz, CDCl₃) 150.3, 149.0, 147.8, 145.2, 137.0, 135.2, 135.0, 129.0 (q, J = 32.5 Hz), 127.5, 126.9, 125.6 (q, J = 3.8 Hz), 124.5 (q, J = 272.5 Hz), 124.3, 122.8, 121.9, 119.5, 118.9, 80.3, 67.6, 17.8, -1.4; ν_max (ATR) 1615, 1587, 1325, 1198, 1122, 1091, 839 cm⁻¹; m/z (ASAP) 470.2 [M+H]+, 353.1 [M-(Me₃Si(CH₂)₂O)]⁺, 335.1 [M-(Me₃Si(CH₂)₂OCH₂)]⁺; Accurate Mass (ASAP) C₂₅H₂₇F₃N₂O₂Si requires M, 470.1875, found [M+H]+ 470.1873.

4-Bromo-2-(2-(trimethylsilyl)ethoxy)methyl)-6-(4-(methoxycarbonyl)phenyl)-2H-indazole (12e)

Isolated following purification by chromatography (0-25% Et₂O in Hexane) as an off white solid (267 mg, 61%).

δ_H (700 MHz, CDCl₃): 8.16 (s(br), 1H), 8.13 (m, 2H), 7.89, (s(distorted), 1H), 7.71 (m, 2H), 7.57 (d, J = 1.1
Hz, 1H), 5.74 (s, 2H), 3.95 (s, 3H), 3.67, (t, J = 8.3 Hz, 2H), 0.97 (t, J = 8.3 Hz, 2H), −0.01 (s, 9H); δC (176 MHz, CDCl₃): 167.0, 149.1, 144.9, 139.6, 130.4, 129.5, 127.4, 125.1, 124.1, 124.0, 115.7, 114.2, 82.3, 68.0, 52.3, 18.0, −1.3; νmax (ATR) 2953, 1723, 1610, 1555, 1436, 1369, 1285, 1250, 1197, 1079, 1018, 930, 836, 795, 772 cm⁻¹; Accurate Mass (ASAP) C_{21}H_{26}^{79}BrN_{2}O_{3} requires M, 461.0896, found [M+H]⁺ 461.0893.

2-((2-(Trimethylsilyl)ethoxy)methyl)-4-(4′-methylphenyl)-6-(4″-(methoxycarbonyl)phenyl)-2H-indazole (14e) Isolated following purification by chromatography (0-10% ethyl acetate in hexane) as a colorless oil (85 mg, 72%). δH (700 MHz, CDCl₃): 8.27 (s, 1H), 8.14 (d, J = 8.3 Hz, 2H), 7.93 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.45 (s, 1H), 7.33 (d, J = 8.0 Hz, 2H), 5.75 (s, 2H), 3.95 (s, 3H), 3.67 (t, J = 8.3 Hz, 2H), 0.97 (t, J = 8.3 Hz, 2H), −0.02 (s, 9H); δC (176 MHz, CDCl₃): 167.2, 150.0, 146.3, 138.9, 138.0, 137.3, 135.6, 130.3, 129.8, 129.1, 128.1, 127.5, 123.2, 121.6, 121.2, 115.3, 82.2, 52.3, 18.0, −1.3; νmax (ATR) 2949, 1719, 1612, 1511, 1435, 1278, 1102, 912 cm⁻¹; Accurate Mass (ASAP) C_{28}H_{33}N_{2}O_{3}Si requires M, 473.2026, found [M+H]⁺ 473.2249.

2-((2-(Trimethylsilyl)ethoxy)methyl)-6-(4-(methoxycarbonyl)phenyl)-2H-indazole (15). 12e (130 mg, 0.28 mmol), was dissolved in ethanol (10 mL) and ammonium formate (353 mg, 5.6 mmol, 20 eq.) was charged. The reaction vessel was evacuated and backfilled with nitrogen (x 3 cycles) before 10% Pd/C (15 mg, 0.014 mmol, 5 mol%) was slowly added under a positive pressure of nitrogen. The reaction was stirred at room temperature for 2 h then filtered through a plug of celite and dry-loaded onto silica for purification by flash column chromatography (15% ethyl acetate in hexane) giving 15 as a viscous clear oil (94 mg, 88%). δH (700 MHz, CDCl₃): 8.13 (m, 2H), 7.97 (s, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.74 (m, 2H), 7.40 (dd, J = 8.7, 1.4 Hz, 1H), 5.75 (s, 2H), 3.95 (s, 3H), 3.66 (t, J = 8.3 Hz, 2H), 0.96 (t, J = 8.3 Hz, 2H), −0.02 (s, 9H); δC (176 MHz, CDCl₃): 167.2, 149.3, 146.2, 138.4, 130.3, 129.0, 127.4, 122.9, 122.6, 122.0, 121.3, 116.5, 82.1, 67.8, 52.3, 18.0, −1.3; νmax (ATR) 2954, 1720, 1607, 1435, 1281, 1108, 932 cm⁻¹; Accurate Mass (ASAP) C_{21}H_{27}N_{2}O_{3}Si requires M, 383.1791, found [M+H]⁺ 383.1787.

2-((2-(Trimethylsilyl)ethoxymethyl)-5-(4′-methoxyphenyl)-7-bromo-2H-indazole (19). In a glovebox, a thick-walled microwave synthesis vial was charged with 10a (327mg, 1 mmol) (vial A). A separate vial was charged with [Ir(COD)OMe]₂ (5 mol%), dtbpy (10 mol%) and B₂pin₂ (2 eq.) before MTBE (2.5ml) was added. Once homogeneous, this solution was added to vial A. The vial was removed from the glovebox and heated at 80 °C for 2 h. Upon completion the volatiles were removed in vacuo to afford the crude boronate product. KOH (3 eq) was added and the vial was sealed and purged with 3 evacuation/refill (Ar) cycles. DMA (5 mL) and H₂O (0.5 mL) were added and the mixture was heated to 70 °C for 15 minutes. The mixture was added to a vial containing Pd(PPh₃)₄ (10
mol%), K$_3$PO$_4$ (2 eq.) and 4-iodoanisole (1.1 eq.), which had been purged with 3 evacuation/refill (Ar) cycles, and heated for a further 2h at 70°C. The reaction was diluted with water (30 mL) and extracted with Et$_2$O (4 x 20 mL). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO$_4$, filtered through celite and concentrated in vacuo to afford the crude product. Purification by flash column chromatography (0-40% Et$_2$O in hexane) afforded 19 as a white powder (0.199g, 46%) δ_H (700 MHz, CDCl$_3$) 8.23 (s, 1H), 7.78 (s, 1H), 7.74 (s, 1H), 7.52 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 5.77 (s, 2H), 3.85 (s, 3H), 3.66 (t, J = 8.5 Hz, 2H), 0.95 (t, J = 8.5 Hz, 2H), -0.02 (s, 9H); δ_C (176 MHz, CDCl$_3$) 159.1, 146.6, 136.1, 133.0, 129.8, 128.2, 124.0, 123.4, 116.8, 114.4, 111.7, 82.3, 67.8, 55.4, 17.9, -1.33; $\nu$$_{max}$ (ATR) 2190, 1981, 1502, 1246, 1096, 832, 743; m/z (ASAP) 434.1 [(^{81}Br)M]$^+$, 432.1 [(^{79}Br)M]$^+$, 350.0 [(^{81}Br)M-(Me$_3$SiCH$_2$)]$^+$, 348.0 [(^{79}Br)M-(Me$_3$SiCH$_2$)]$^+$; Accurate Mass (ASAP) C$_{20}$H$_{25}$^{79}BrN$_2$O$_2$Si requires M, 432.0869, found m/z [M]$^+$ 432.0865.

ASSOCIATED CONTENT

Supporting Information

1H, 13C, and 11B NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*p.g.steel@durham.ac.uk.

ACKNOWLEDGMENT

We thank the EPSRC and Pfizer Neusentis (iCASE award to ACH), Astra Zeneca (CASE award to SS), AllyChem Co. Ltd. for a generous gift of B$_2$pin$_2$, Dr A. M. Kenwright (Durham University) for assistance with NMR experiments and Dr J. A. Mosely (Durham University) for mass spectra.

REFERENCES

17

14 The borylation of 2e with an excess of B_{2}pin_{2} afforded a 5:1 mixture of 16 and the corresponding 3,6-diborylindazole, respectively.

16. Attempts to achieve selective borylation at C-7 using Si-SMAP exploiting coordination of the azinyl nitrogen for directed borylation (see ref 5g) were not successful presumably reflecting the lower Lewis basicity of the nitrogen lone pair.