Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The splicing landscape is globally reprogrammed during male meiosis.

Schmid, R. and Grellscheid, S.N. and Ehrmann, I. and Dalgliesh, C. and Danilenko, M. and Paronetto, M.P. and Pedrotti, S. and Grellscheid, D. and Dixon, R.J. and Sette, C. and Eperon, I.C. and Elliott, D.J. (2013) 'The splicing landscape is globally reprogrammed during male meiosis.', Nucleic acids research., 41 (22). pp. 10170-10184.

Abstract

Meiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons. The expression of many key splicing regulators changed in the course of meiosis, including downregulation of polypyrimidine tract binding protein (PTBP1) and heterogeneous nuclear RNP A1, and upregulation of nPTB, Tra2β, muscleblind, CELF proteins, Sam68 and T-STAR. The sequences near the regulated exons were significantly enriched in target sites for PTB, Tra2β and STAR proteins. Reporter minigene experiments investigating representative exons in transfected cells showed that PTB binding sites were critical for splicing of a cassette exon in the Ralgps2 mRNA and a shift in alternative 5′ splice site usage in the Bptf mRNA. We speculate that nPTB might functionally replace PTBP1 during meiosis for some target exons, with changes in the expression of other splicing factors helping to establish meiotic splicing patterns. Our data suggest that there are substantial changes in the determinants and patterns of alternative splicing in the mitotic-to-meiotic transition of the germ cell cycle.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
(2280Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1093/nar/gkt811
Publisher statement:© The Author(s) 2013. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Record Created:09 Jun 2015 09:50
Last Modified:09 Jun 2015 13:54

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library