Skip to main content

Research Repository

Advanced Search

Quantum interference between two single photons emitted by independently trapped atoms

Beugnon, J.; Jones, M.P.A.; Dingjan, J.; Darquie, B.; Messin, G.; Browaeys, A.; Grangier, P.

Authors

J. Beugnon

J. Dingjan

B. Darquie

G. Messin

A. Browaeys

P. Grangier



Abstract

When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths - in which the photons leave by different output ports - interfere destructively. This effect was first observed in parametric downconversion(1) ( in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals(2), as well as with single photons produced one after the other by the same quantum emitter(3-6). With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques(2,7-11). To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.

Citation

Beugnon, J., Jones, M., Dingjan, J., Darquie, B., Messin, G., Browaeys, A., & Grangier, P. (2006). Quantum interference between two single photons emitted by independently trapped atoms. Nature, 440(7085), 779-782. https://doi.org/10.1038/nature04628

Journal Article Type Article
Publication Date 2006-04
Deposit Date May 8, 2008
Publicly Available Date Mar 28, 2024
Journal Nature
Print ISSN 0028-0836
Electronic ISSN 1476-4687
Publisher Nature Research
Peer Reviewed Peer Reviewed
Volume 440
Issue 7085
Pages 779-782
DOI https://doi.org/10.1038/nature04628
Keywords Entanglement.

Files





You might also like



Downloadable Citations