Durham Research Online

Deposited in DRO:
01 July 2015

Version of attached file:
Presentation

Peer-review status of attached file:
Not peer-reviewed

Citation for published item:

Further information on publisher’s website:
http://www.earli2013.org/

Publisher’s copyright statement:

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source
• a link is made to the metadata record in DRO
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
On costs of good intentions:
The detrimental effect of problem contextualisation on learning

Jens Beckmann
Natassia Goode

Complex Problem Solving

To study information processing, decision making, intelligence, knowledge acquisition, learning ...
Complex, dynamic problems change as a result of the decisions made by the problem solver, as well as autonomously.
Learning Task

1. Acquire knowledge about the causal structure
 - Direct learning task
 - Rule induction
 - Systematic interaction / experimentation

2. Apply knowledge to control the system
 - Indirect learning task
 - Utilisation of rule knowledge acquired to reach and maintain set target values in output variables
 - Knowledge based and goal orientated interaction

Generic problem solving skill central to scientific enquiry: drawing causal inferences based on systematic experimentation
... in favour of the cherry tree?

- Common view held by educationalists, teachers, instructional designers ...
- Goldstone & Sakamoto (2003): the use of variable labels referring to familiar contexts facilitates the understanding of abstract scientific concepts (see also Lazonder, Wilhelm & Hagemans, 2008; Lazonder, Wilhelm & Van Lieburg, 2009)
- Reference to prior knowledge helps generating hypotheses that can be tested
- Sense of familiarity is considered helpful

... well, maybe not!

- Beckmann, 1994; Beckmann & Guthke, 1995; Burns & Vollmeyer, 2002;
- Lazonder, Wilhelm & Hagemans, 2008*; Lazonder, Wilhelm & Van Lieburg, 2009*
- Poorer performance under "semantically meaningful" conditions

→ Semantic Effect

Aim

Why is the acquisition of new knowledge inhibited by a "semantically meaningful" context?

Two explanatory mechanisms:
- Goal Adoption
 - despite instruction to explore problem solvers tend to adopt goals (i.e., self-defined optimisation of values in output variables)
- Presumptions
 - Semantic contexts induces sense of familiarity
 - Familiarity triggers assumptions
 - Testing of assumptions is cognitively more demanding than seeking for confirmation

Design

<table>
<thead>
<tr>
<th>N</th>
<th>Condition</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>abstract</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>concrete</th>
<th>Light</th>
<th>Water</th>
<th>Temperature</th>
<th>Cherries</th>
<th>Leaves</th>
<th>Beetles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cherries</td>
<td>Leaves</td>
<td>Beetles</td>
</tr>
</tbody>
</table>

Age: 18 – 48 (20.5)
Sex: 72 % female
Results (Replication Semantic Effect)

Main effect Knowledge Acquisition: $F_{1,39} = 22.41, p < .01, \eta^2 = 0.37$

Main effect Condition: $F_{1.78} = 8.35, p < .01, \eta^2 = 0.17$

Interaction Knowledge Acquisition X Condition: $F_{1,39} = 12.62, p < .01, \eta^2 = 0.25$

Design

<table>
<thead>
<tr>
<th>N</th>
<th>Condition</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>abstract</td>
<td>A X</td>
<td>Y Z</td>
</tr>
<tr>
<td>19</td>
<td>abstract output</td>
<td>Light</td>
<td>Water</td>
</tr>
<tr>
<td>20</td>
<td>concrete output</td>
<td>A B C Cherries Leaves Beetles</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>concrete</td>
<td>Light Water Cherries Leaves Beetles</td>
<td></td>
</tr>
</tbody>
</table>

Results (Goal Adoption)

Main effect Knowledge Acquisition: $F_{1,39} = 39.72, p < .01, \eta^2 = 0.34$

Main effect Condition: $F_{1,78} = 1.15, p = .26, \eta^2 = 0.01$

Interaction Knowledge Acquisition X Condition: $F_{1,39} = 5.59, p = .02, \eta^2 = 0.07$
Concrete variable labels encourage formation of a priori assumptions about the structure of the system (Somer’s $D = .25, p = .003$).
Results Summary

Goal Adoption?
- contrast b/w conditions with concrete and abstract labels for outputs
- Knowledge acquisition: $F_{1,78} = 3.48, p = .07, \eta^2 = 0.04$
- System control: $F_{1,78} = 1.38, p = .24, \eta^2 = 0.02$

Presumptions?
- higher levels of semanticity increases significantly the likelihood to adopt high numbers of presumptions (Somer’s $D = .25, p = .005$)
- contrast b/w high and low levels of a priori assumptions
- Knowledge acquisition: $F_{1,78} = 12.89, p < .01, \eta^2 = 0.14$
- System control: $F_{1,78} = 24.60, p < .01, \eta^2 = 0.24$

Systematicity

- only 4 interventions are necessary to completely identify the underlying causal structure
 - Leave all inputs at zero → identifies autonomic changes
 - Vary one input at a time → identifies effects of inputs on each output
 - Combined: Vary One or None at A Time (VONAT) as indicator of systematicity
- High levels of assumptions are associated with low levels of systematicity in exploration behaviour ($r_{pb} = .53, p < .001$)
- Low levels of systematicity is associated with low levels of accuracy of acquired knowledge ($r = .32, p = .002$).

Summary

Semantic effect replicated
No support for goal adoption as explanatory mechanism
Support for presumption hypothesis:
- Concrete labels induce sense of familiarity
- Familiarity generates presumptions
- Presumptions are less likely to be tested systematically
- Unsystematic exploration behaviour impedes knowledge acquisition
- Poor knowledge acquisition leads to poor system control

Implications

It is presumptuous to assume that hypotheses testing does occur “naturally” in learners.
- “Instructional disobedience” or “instructional idealism”?
- Challenge for constructivist, discovery, problem-based, experiential, and inquiry-based teaching
- Guidance needed on how to (a) explicate assumptions and (b) test them systematically.