
Further information on publisher’s website:
http://dx.doi.org/10.1063/1.475894

Publisher’s copyright statement:
© 1998 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in The Journal of Chemical Physics 108, 4849 (1998) and may be found at http://dx.doi.org/10.1063/1.475894

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Total differential cross sections for Ar–CH 4 from an ab initio potential
Tino G. A. Heijmen, Robert Moszynski, Paul E. S. Wormer, Ad van der Avoird, Udo Buck, Christof Steinbach, and Jeremy M. Hutson

Citation: The Journal of Chemical Physics 108, 4849 (1998); doi: 10.1063/1.475894
View online: http://dx.doi.org/10.1063/1.475894
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/108/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO

Ab initio potential energy surface and intermolecular vibrations of the naphthalene-argon van der Waals complex

Inelastic collision cross sections of CH (X 2 Π) with He (1 S) on new ab initio surfaces

Total differential cross sections and differential energy loss spectra for He–C 2 H 2 from an ab initio potential

Ab initio potential-energy surface and rotationally inelastic integral cross sections of the Ar–CH 4 complex
Total differential cross sections for Ar–CH$_4$ from an ab initio potential

Tino G. A. Heijmen
Institute of Theoretical Chemistry, NSR Center, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Robert Moszynski
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Paul E. S. Womer and Ad van der Avoird
Institute of Theoretical Chemistry, NSR Center, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Udo Buck and Christof Steinbach
Max-Planck-Institut für Strömungsforschung, Bunsenstraße 10, D-37073 Göttingen, Germany

Jeremy M. Hutson
Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom

(Received 23 September 1997; accepted 16 December 1997)

Total differential cross sections for the Ar–CH$_4$ scattering complex at $E_{CM}=90.1$ meV were obtained from converged close-coupling calculations based on a recent ab initio potential computed by symmetry-adapted perturbation theory (SAPT). Agreement with experiment is good, which demonstrates the accuracy of the SAPT potential. © 1998 American Institute of Physics.

I. INTRODUCTION

During the last few decades, a number of experimental and theoretical studies have been devoted to the rotationally elastic and inelastic scattering of Ar–CH$_4$. In their pioneering work$^{1-3}$ Secrest and coworkers applied both the close-coupling (CC) and coupled-states (CS) formalisms in the calculations of differential cross sections (DCS). Buck et al.4 measured total differential cross sections in a crossed beam experiment at $E_{CM}=90.1$ meV. These results were used to derive an empirical potential of the Morse-spline-van der Waals type including the leading anisotropic contribution with tensor order $l=3$. Time-of-flight (TOF) spectra were reported6 and compared with CS calculations that used the potential from Ref. 4. Total differential cross sections for Ar–CH$_4$ were also measured at slightly different collision energies. 6 Liuti et al.7 reported total integral cross sections for rare gas–methane scattering as functions of the velocity. These data were used to further improve the isotropic term in the potential of Ref. 4.

Recently, we calculated an ab initio intermolecular potential energy surface for Ar–CH$_4$ using symmetry-adapted perturbation theory (SAPT).8 After performing an analytical fit to the computed points, the long range dispersion and induction coefficients in the fit were replaced by coefficients calculated in a larger basis set. See Ref. 9 for a more detailed description of this asymptotic scaling procedure. We applied this ab initio potential in CC calculations of state-to-state integral cross sections for A, E, and T states of methane rotationally excited by collisions with argon. The results were generally in good agreement with experimental data.10 The ab initio SAPT potential was also used to generate second virial coefficients for the Ar–CH$_4$ complex.11 Virial coefficients computed from the asymptotically scaled potential were found to agree well with experiment, substantially better than those calculated from the original non-scaled potential.

In a previous work,12 total differential cross sections and TOF spectra for He–C$_2$H$_2$ computed from a SAPT potential13 were found to be in excellent agreement with experiment. In the current paper, we present total differential cross sections for Ar–CH$_4$, computed at the collision energy $E_{CM}=90.1$ meV, from converged CC scattering calculations. We compare the results obtained from the asymptotically scaled and the non-scaled SAPT potentials with the experimental data from Ref. 4.

II. COMPUTATIONAL DETAILS

The CC equations for atom–spherical top scattering were given in Refs. 8,14. The monomer wave functions for methane are expressed as linear combinations of symmetric top functions (normalized rotation matrix elements). The coefficients in these combinations are obtained by constructing and diagonalizing for each angular momentum j a rotational Hamiltonian matrix that includes the tetrahedral centrifugal distortion.8 The following values were assigned to the rotational constant b, the centrifugal distortion constant d_j, and the tetrahedral centrifugal distortion constant d_i: $b=5.2410356$ cm$^{-1}$, $d_j=1.10864\times 10^{-4}$ cm$^{-1}$, and $d_i=4.425\times 10^{-6}$ cm$^{-1}$. The CC equations were solved applying the modified log-derivative–Airy integrator.16 The log-derivative propagator was used from $R_{min}=4.5$ bohr to $R_{mid}=15$ bohr with a constant step size corresponding to 5 steps per half wavelength for the open channel of highest kinetic energy in the asymptotic region. From R_{mid} to
$R_{\text{max}} = 100$ bohr the Airy propagator was used. Partial wave contributions with increasing values of the total angular momentum J were included until both the elastic and inelastic state-to-state cross sections were converged within 0.001 Å. With the asymptotically scaled potential, the highest values of J included for the A, E, and T symmetries were 309, 310, and 297, respectively. If the lengths of the partial wave expansions were smaller, the elastic contributions showed unphysical oscillations, especially at large angles. The angular basis contained all channels with monomer angular momentum j up to 14 inclusive. However, for the E and T symmetries the components with $J\geq 190$ and 182, respectively, were calculated in a basis including only channels with $j\leq 11$. The total number of channels for the bases with $j\leq 14$ and $j\leq 11$ were ≈ 385 and 190, respectively, for the E symmetry, and ≈ 560 and 290, respectively, for the T symmetry. Thus, decreasing the maximum value of the monomer angular momentum j from 14 to 11 caused the sizes of the basis sets to be reduced by approximately a factor of two. For the A symmetry, the total number of channels was ≈ 90. We tested that the deviations caused by the reduction of the monomer basis at large J were negligible. We performed additional calculations for the A states with the non-scaled potential and the same set of parameters. The highest value of J included was 307 in this case. The Ar–CH$_4$ interaction potential, which is a function of the distance R between the CH$_4$ center-of-mass (c.m.) and the Ar atom and of the polar angles (θ, ϕ) of the vector \mathbf{R}, was expanded in real combinations of spherical harmonics $Y_l^m(\theta, \phi)$ with $l \leq 18$. The expansion coefficients were computed by means of 25-point Gauss–Legendre and Gauss–Chebyshev quadratures in θ and ϕ, respectively. The reduced mass of Ar–CH$_4$ is 11.441478 amu. The integration parameters, the size of the monomer basis, the number of partial waves, and the length of the expansion of the potential were chosen such that the state-to-state cross sections were converged within 1% at worst. All scattering calculations were performed using the MOLSCAT code.18 Differential cross sections in the c.m. frame were generated from the calculated S-matrix elements using the DCS program.19 This program was extended such that it can be applied to atom–spherical top systems. The c.m. scattering angle Θ_{CM} was varied from 0° to 180° with steps of 0.5°. It was assumed that initially the methane molecules are in the lowest rotational state permitted for each of the symmetry types, i.e., $j^e = 0, 1,$ and 2 for A, T, and E symmetries, respectively.

In order to compare the \textit{ab initio} total differential cross sections, summed over all elastic and inelastic channels, with experiment, the calculated values were transformed from the c.m. frame to the laboratory-fixed (lab) frame and averaged over the velocity and angular distributions of the methane and argon beams. Furthermore, corrections were made for the energy response and physical size of the detector. The averaging procedure is described in detail elsewhere.20 The key parameters are the full width at half maximum of the c.m. angular and velocity distributions, $\delta = 1.46^\circ$ and $\Delta v/v = 0.13$, respectively. They are calculated using a Monte–Carlo procedure with the quantities mentioned above as input information. The actual calculations are then performed on a 12×12 point grid in the two variables. The energy dependence of the cross sections is explicitly taken into account with the help of a scaling law21 which has been checked against exact calculations.

\section*{III. RESULTS AND DISCUSSION}

Figures 1(a) and 1(b) depict the state-to-state, total inelastic, and total differential cross sections for the A symmetries of Ar–CH$_4$ calculated with the asymptotically scaled SAPT potential as functions of the c.m. angle. The molecular rotational quantum numbers of the final states are indicated.
around $\theta_{CM} = 60^\circ$. It is interesting to note that although various state-to-state differential cross sections show very different dependence on the c.m. deflection angle, the total cross sections, i.e., the cross sections summed over the elastic and all inelastic channels, are almost identical.

The theoretical total differential cross sections for the A states of $\text{Ar} - \text{CH}_4$, transformed to the lab frame and averaged over the experimental conditions, are reported as a function of the laboratory angle in Fig. 4. It was essential that different inelastic contributions were transformed individually, since they have different final velocities. The use of the purely elastic transformation would substantially underestimate the theoretical differential cross sections at large lab angles. The experimental cross sections from Ref. 4 are displayed in this figure as well. In order to remove the strong angular dependence of the elastic differential cross section the data are multiplied by $\Theta^{7/3}$. Although the state-to-state differential cross sections for the E and T states of $\text{Ar} - \text{CH}_4$ are different from those of the A species (cf. Figs. 1–3), the total differential cross sections in the lab frame were found to be almost identical. Therefore, these results are not shown. The position of the maximum of the total differential cross sections, the rainbow angle, is very well reproduced, but the slope of the theoretical curve beyond the rainbow angle is somewhat different from experiment. These two features of the total differential cross sections are mainly sensitive to the well depth of the potential, so the results presented in Fig. 4 suggest that the well depth of the ab initio potential is underestimated, but only by a very minor amount. Furthermore, the positions and amplitudes of the diffraction oscillations, which modulate the maximum of the curve, agree well with experiment. This result indicates that both the onset of the repulsive wall (R_0) and the anisotropy of the minimum distance $R_m(\Theta)$ of the potential are realistic. On the other hand, the coarse structure amplitude of the curve, which represents the rainbow maximum, slightly deviates from the experimental data. Test calculations of the averaging process show that the rainbow amplitude is not influenced by small changes of the resolution.

A possible reason for such a behavior could be too weak
a damping of the rainbow amplitude due to the anisotropy of the well depth. However, a careful inspection of the total differential cross sections in the rainbow region shows that they are completely dominated by the elastic contributions. This is also reflected in the potential terms in the attractive part near the inflection point which is the part of the potential that is most sensitively probed in rainbow scattering. Here V_0 is much larger than the anisotropic V_3 and V_4 terms. Therefore we attribute the small discrepancy in the rainbow amplitude to a small error in the shape of the potential near the inflection point: the rainbow impact parameter is slightly too large, which influences the rainbow amplitude. Indeed the best fit isotropic potentials of Refs. 4, 7 exhibit smaller rainbow impact parameters and thus slightly smaller amplitudes.

For comparison, we have plotted in Fig. 5 the total differential cross sections for the A states of Ar–CH$_4$, calculated from the semiempirical potential $V_0^c + V_3^c$ reported by Buck et al.3 This figure is not identical with Fig. 8 of Ref. 4, which was obtained from the same potential, because in the present work we applied the close-coupling instead of the coupled-states formalism and did not retransform the results to the c.m. frame. The agreement of the present curve with experiment is worse between 5° and 6° to the c.m. frame. The agreement of the present curve with the semiempirical $V_0^c + V_3^c$ potential of Ref. 4 as functions of the lab angle. Circles denote experimental data from Ref. 4, the error bars represent ±1 standard deviation of the mean.

We conclude that the asymptotically scaled SAPT potential reported in Ref. 8 is able to reproduce well the total differential cross sections for Ar–CH$_4$. The only deviation from experiment is in the rainbow amplitudes suggesting that there are small inaccuracies in the shape of the potential near the inflection point. The well depth of the potential, however, is very realistic, since the position of the rainbow angle is accurately reproduced. Comparison with the results obtained from the semiempirical potential of Ref. 4, which was fitted to the measured differential cross sections, shows that the results from the SAPT potential agree about equally well with these experimental data. Work on the application of this ab initio potential to generate the infrared spectrum of the Ar–CH$_4$ complex in the region of the v_3 mode is in progress.

ACKNOWLEDGMENTS

This work was supported by the Netherlands Foundation of Chemical Research (SON), the Netherlands Organization for Scientific Research (NWO), and by KBN funds through the Department of Chemistry, University of Warsaw, within the Grant BST-562/23/97.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.234.252.67 On: Wed, 19 Aug 2015 08:42:10
8. J. M. Hutson and S. Green, MOLSCAT computer code, version 14 (1994), distributed by Collaborative Computational Project No. 6 of the Engineering and Physical Sciences Research Council (UK).
9. S. Green and J. M. Hutson, DCS computer code, version 2.0 (1996), distributed by Collaborative Computational Project No. 6 of the Engineering and Physical Sciences Research Council (UK).