Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Simulation of three-component two-phase flow in porous media using method of lines.

Goudarzi, S. and Mathias, S.A. and Gluyas, J.G. (2016) 'Simulation of three-component two-phase flow in porous media using method of lines.', Transport in porous media., 112 (1). pp. 1-19.

Abstract

Numerical simulation of compositional flow problems commonly involves the use of 1st- or 2nd-order Euler time stepping. Method of lines (MOL), using highly accurate and efficient ODE solvers, is an alternative technique which, although frequently applied to the solution of two-phase, two-component flow problems, has generally been overlooked for problems concerning more than two components. This article presents the development of a numerical simulator for 1D, compressible, two-phase, three-component, radially symmetric flow using the method of lines (MOL) and a 3rd-order accurate spatial discretization using a weighted essentially non-oscillatory (WENO) scheme. The MOL implementation enables application of the MATLAB ODE solver, ODE15s, for time integration. Simulation examples are presented in the context of CO2CO2 injection into a reservoir containing a mixture of CH4CH4 and H2OH2O. Following an assumption of constant equilibrium ratios for CO2CO2 and CH4CH4, a ternary flash calculator is developed providing closed-form relationships for exact interpolation between equations of state for CO2CO2–H2OH2O and CH4CH4–H2OH2O binary mixtures. The numerical code is successfully tested and verified for a range of scenarios by comparison with an existing analytical solution.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(263Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
(915Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1007/s11242-016-0639-5
Publisher statement:© The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Record Created:18 Jan 2016 12:35
Last Modified:05 Feb 2017 00:36

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library