Petrography, mineral chemistry, fluid inclusion microthermometry and Re-Os geochronology of the Küre Volcanogenic Massive Sulfide Deposit (Central Pontides, Northern Turkey)

Mehmet Akbulut*a,*, Tolga Oymana, Mustafa Çiçekb, David Selbyb, İsmet Özgenç*a,†, Murat Tokçara

aDokuz Eylül University, Department of Geological Engineering, Buca, Izmir,TR-35160, Turkey
bDurham University, Department of Earth Sciences, Durham, DH1 3LE, UK

*Corresponding Author: Mehmet AKBULUT, Dokuz Eylül University, Department of Geological Engineering, Buca, Izmir, TR-35160, Turkey
E-mail: makbulut@deu.edu.tr; mehmet.akbulut@deu.edu.tr; Tel.: +90 232 3017349;
Fax: +90 232 4531129.

Abstract

The Re-Os isotopic system is applied for the first time to the sulfide ores and the overlying black-shales at the Küre volcanogenic massive sulfide deposit of the Central Pontides, Northern Turkey. The ore samples collected include predominantly pyrite, accompanied by chalcopyrite, sphalerite and other species. Massive ore is almost free of gangues, whereas the stockwork ore includes quartz and calcite gangue. The composition of sphalerite is similar to ancient and modern massive sulfide mineralizations globally. Microthermometric studies...
from quartz from the stockwork ore has shown two populations of two-phase fluid inclusions with vapor/liquid ratios between 4 to 28%, low to intermediate T_h (161.5-317.0°C) and low salinities (0.9-5 wt % NaCl equiv.) which are mostly in good agreement with the ranges for volcanogenic massive sulfide mineralizations. These studies also suggest a $H_2O-CaCl_2-KCl-MgCl_2$ ore-forming fluid system in a shallower subsurface near the seafloor vents. The Re-Os dating of the LLHR sulfides yield a nominal depositional age of upper Toarcian for the massive sulfide mineralization. Two largely different model ages obtained are attributed to other pyrite crystallization events prior to and postdating the main sulfide deposition. Some lower homogenization temperatures (<200°C) from the quartz of the stockwork may also similarly be related to the post-VMS events. It is concluded that a submarine volcanic extrusion episode has continued until upper Toarcian in the Küre Basin, when it has entered a stagnation period that allowed the discharge of hydrothermally circulated sulfide-laden fluids from the seafloor vents. This age data promotes the paleotectonic models interpreting the Küre Basin as a Permian-early Jurassic marginal back-arc basin of the Devonian-Triassic Karakaya Ocean. The Re-Os data from the overlying black-shale provide a glimpse to the initial Os isotope ratio of the water column at the time of the sedimentation (0.45-0.46 for 180 Ma). The lack of common Os from the sulfides does not let us to infer a source of Os and initial $^{187}\text{Os}/^{188}\text{Os}$ ratios from the black shale are not statistically robust to make a significant deduction. A further detailed study on the isotopic composition of the black shale strata may help us to make an approach to the Os source(s) in the deposition environment of the Küre VMS deposit.

Keywords: Re-Os geochronology, low level highly radiogenic sulfide, black shale, Cyprus-type massive sulfide deposits, Küre, Central Pontides
1. Introduction

Volcanogenic massive sulfide (VMS) deposits range from lens shaped to sheet-like bodies of polymetallic massive sulfide accumulations that form at or near the seafloor in submarine volcanic environments by introduction of metal-enriched fluids associated with seafloor hydrothermal convection (cf. Galley et al., 2007). To classify the VMS deposits worldwide, several methods/schemes have been proposed generally considering using one or more of the following three criteria: the metal contents (e.g., such as Cu- Zn, Zn-Cu and Zn-Pb subtypes; Franklin et al, 1981 ; Large, 1992; Franklin et al, 2005), host-lithologies (e.g., mafic-felsic-bimodal volcanic and/or siliciclastic rocks; Piercey, 2010; 2011) and the tectonic settings (e.g., extensional and/or compressional regimes related to oceanic rifting-spreading, island-arc formation;cf. Misra, 2000 and references therein). One of the oldest and well-known classification schemes present a combination of the host-lithology and the tectonic setting (e.g., Sawkins, 1976) in which the VMS deposits are sub-divided in Kuroko-, Cyprus-, and Besshi-type deposits (cf. Pirajno, 2009). Recently, the scheme by Barrie and Hannington (1999) and Franklin et al. (2005) that classifies the VMS deposits according to their host lithologies as: back-arc mafic, bimodal-mafic, pelitic-mafic, bimodal-felsic, felsic-siliciclastic and hybrid bimodal-felsic (cf. Galley et al., 2007) groups is well-accepted and used as a standard. However, studies on the Turkish VMS deposits generally uses the scheme by Sawkins (1976) and subdivided the VMS deposits of Turkey mainly into Kuroko- and Cyprus-types (cf. Yiğit, 2006). As type conversion of these Turkish VMS deposits would be a subject of another detailed study, we will continue with the current usage of Sawkins (1976) classification for Turkish VMS deposits hereafter.

The Kuroko-type deposits of Turkey (including Murgul, Cerattepe, Çayeli, Lahanos) that are accompanied by several porphyry Cu-Au mineralizations, are mainly located in the Eastern Pontides segment lying along northeastern Turkey (Fig. 1a). These deposits are
located in felsic lavas and pyroclastics of calc-alkaline submarine volcanism. The occurrence of these deposits are usually attributed to the formation of the Late Cretaceous magmatic arc in the region. The Cyprus-type VMS deposits of Turkey, related to mafic submarine rocks (usually tholeiitic pillow lavas) on the contrary, are mainly concentrated in the Southern Anatolian Ophiolite Belt (Fig. 1a) that is interpreted as an eastern extension of the Troodos Massif (Cyprus) suture zone (Erler, 1984; Yiğit, 2006) again formed during the closure of the Tethys Ocean. Most important examples of this Cyprus-type VMS in this region are the Ergani and Madenköy Cu deposits. The Küre VMS deposit represents the sole Cyprus-type VMS occurrence, standing alone in the Central Pontides, just west of the Kuroko-type and porphyry deposits of the Eastern Pontides (Fig. 1a). The deposit is located in the Küre ophiolite which is considered as a remnant of a back-arc ocean that opened during the pre-Lias (Lower Jurassic) and closed in the early Dogger (Middle Jurassic) as part of the Tethyan realm (Sarıfakıoğlu et al., 2013).

The Küre VMS Deposit comprises several VMS occurrences; namely the Aşıköy, Kızılsu, Toykondu, Bakibaba, and Mağaradoruk mineralizations (Fig. 2; cf. Altun et al., 2015). The copper rich-massive sulfide ore bodies in the Küre region, mainly of the Bakibaba area, had been mined throughout the ancient history of the Anatolia. However, modern geological mapping and prospecting studies had been initiated shortly after the foundation of the Republic of Turkey and resulted in the exploration of the Aşıköy and Kızılsu areas and some virgin parts of the Bakibaba area (cf. Nikitin, 1926; Kovenko, 1944; Güner, 1980). The mining and prospecting continued sporadically by the governmental authorities (Maden Tektik ve Arama Genel Müdürlüğü, Etibank, Karadeniz Bakır İşletmeleri) until 2004. Several deposits are currently being exploited by the Eti Bakır Joint-Stock Corporation, a subsidiary body of the Cengiz Holding (Turkey). Previous studies have documented the geology, geochemistry, mining geology, and ore paragenesis of many of the areas (e.g., Nikitin, 1926;
Kovenko, 1944; Güner, 1980; Çağatay et al., 1980; Pehlivanoğlu, 1985; Ustaömer and
Robertson, 1994; Çakır, 1995; Kuşçu and Erler, 2002; Çakır et al., 2006; Altun et al., 2015;
However, there is a lack of direct radiometric dating of the sulfides that comprise the
mineralization of these VMS systems.

The age of ore deposition in a mineral deposit is one of the most important data that
enlighten the history of the ore formation and its tectonic history. However, the ore deposition
ages in VMS deposits are generally poorly constrained by indirect radiometric dating methods
(e.g., 40Ar-39Ar, Rb-Sr, Sm-Nd) of the heavily altered and sometimes metamorphosed
volcanic host rocks, and/or by the paleontological data from the sedimentary strata (cf. Hou et
al., 2003). All of these methods concentrate on the silicate-gangue mineralogy of the host rock
or the fossils, but not the ore. Thus, recent developments in direct dating of the sulfide phases
have opened a new window of opportunity. The relatively new and continuously developing
Re-Os method is nowadays considered as a powerful tool for radiometric dating of the sulfide
phases as both of these elements present siderophile and chalcophile nature and tend to enrich
in sulfide minerals (e.g., Walker et al., 1994; Suzuki et al., 1996; Mathur et al., 1999; Stein et
al., 2000; Hannah et al., 2004; Morelli et al., 2005; Kato et al., 2009; Selby et al., 2009;
Nozaki et al., 2010). The method is principally optimal in dating molybdenite (MoS_2) bearing
Mo-Cu hydrothermal systems owing to the high Re enrichment (ppm) and only radiogenic Os
in molybdenite. However, lately the method has been successfully applied to low Re and Os
bearing (ppb and ppt, respectively) sulfide phases such as pyrite and arsenopyrite (cf. Arne et
al., 2001; Stein et al., 2000; Liu et al., 2004; Yu et al., 2005; Selby et al., 2009; Guo et al.,
2011) in VMS systems (e.g.; Terakado, 2001a, 2001b; Hou et al., 2003; Nozaki et al., 2010,
2014). These sulfides are mainly termed as “low-level highly radiogenic” (LLHR) sulfides
(Stein et al., 2000) and provide a precise Re-Os dating tool in the absence of molybdenite, as
they can include little or no initial Os content (Kerr and Selby, 2010). While pyrite and
arsenopyrite are accepted as reliable, sphalerite is mainly considered as an unreliable media for LLHR sulfide Re-Os geochronology (cf. Morelli et al., 2004; Morelli et al., 2005; Kerr and Selby, 2010). The Re-Os dating is also an important tool in dating of the organic material-rich black-shales (e.g., Ravizza and Turekian, 1989; Ravizza et al., 1991; Cohen et al., 1999; 2004; Singh et al., 1999; Creaser et al., 2002; Selby and Creaser, 2003; Hannah et al., 2004; Fu et al., 2008). The method is especially very useful when the fossil distribution is limited and/or unclear (e.g., Kendall et al., 2006; Zhu et al., 2010). Re and Os are mainly included in sulfides and organic materials of the mud deposited in anoxic or euxinic marine environments, with the decay of 187Re to 187Os providing a radiometric clock that records the time of shale deposition (Hannah et al., 2008).

As the Küre VMS deposit in northern Turkey has a unique lithostratigraphy including huge pyrite-rich massive sulfide lenses that are constrained by the organic matter-rich black shale-sandstone alternations and pillow lavas, this geological setting provides one of the locations for applying the Re-Os isotope system. In this study, we present the first Re-Os isotopic data from both the pyrite and the black-shale of the Küre VMS deposit to constrain the age of main sulfide deposition and understand the depositional environment. In addition, we also present mineralogical and microthermometric data. With these new data, we further contribute to the origin of the Küre VMS mineralization and the understanding on the evolutionary history of its depositional environment.

2. Geological Setting

The Küre VMS deposit is located 61 km north of the Kastamonu City (central northern part of the Turkey, Figs. 1a and b) in the central part of the Pontides of the Tethyside system. The Pontides is an east-west trending orogenic belt located at the northernmost part of Turkey that comprise the Cimmeride and Alpide orogenic events in the Mediterranean realm related
to the closure and opening of the Paleo- and Neo-Tethyan oceanic basins, respectively (cf. Yılmaz et al., 1997). The Pontides is generally divided in three main sectors; the western, the central, and the eastern Pontides.

The Küre Complex, located in the central Pontides, is defined as a thick wedge of late Palaeozoic-early Mesozoic mainly siliciclastic sediments interleaved with a dismembered ophiolite, named the Küre Ophiolite (Ustaömer and Robertson, 1994; Figs. 2a and 2b). The Küre Ophiolite comprises the Akgöl Group, İpsinler Basalt of the Küre Ocean Unit and the Elekdağ Ophiolite (cf. Kozur et al., 2000 and the references therein) and hosts the Küre VMS deposit. It is mainly interpreted as a metamorphosed and dismembered ophiolitic assemblage created by the geodynamics of the Paleo-Tethyan Ocean (e.g., Şengör et al., 1984; Ustaömer and Robertson, 1994; 1997; Yiğitbaş et al., 1999; 2004). The Küre Ophiolite mainly comprises serpentinized tectonites (harzburgite to dunite), intrusive gabbro and lherzolites, and spilitic basalts and diabase (e.g., Çakır, 1995; Terzioğlu et al., 2000; Çakır et al., 2006; Fig. 2). The tectonites, basalts and siliciclastic sedimentary rocks of the Küre Complex are mainly cross-cut by isolated diabase dykes, with the true sheeted dyke complex cross-cutting the isotropic microgabbros of the assemblage (e.g., Ustaömer and Robertson, 1993, 1994; Çakır et al., 2006). Terzioğlu et al. (2000) and Kozur et al (2000) also indicate existence of a small amount of trondhjemite-granophyres and altered plagiogranites in the complex. All of these units are intruded by Middle Jurassic granitoids-dacitic dikes (Boztuğ et al., 1995; Yılmaz, 1980; Kuşçu and Erler, 2002), and uncomformably covered by Middle-Late Jurassic basal conglomerates that are overlain by Late Jurassic limestones (e.g., Güner, 1980; Pehlivanoğlu, 1985; Aydın et al., 1986; Ustaömer and Robertson, 1994; Çakır, 1995; Çakır et al., 2006; Figs. 2a and b).

Owing to the extensive tectonism, the contacts of the Küre Complex rocks are generally disrupted and primary ophiolitic succession is missing. The tectonites are found
thrusted over the basaltic and siliciclastic sedimentary rocks; likewise the basalts are
commonly thrusted onto their siliciclastic sedimentary cover (cf. Çakır, 1995; Çakır et al.,
2006). However, there are localities where the primary contact relations are observable (see
below).

The basalts consist of massive to pillow lavas and hyaloclastites, and are covered
conformably by a “shale-sandstone” (cf. Çakır, 1995; Çakır et al., 2006) or “black shale-
subgraywacke” unit (Ketin and Gümüş, 1963; Güner, 1980; Kuşçu and Erler, 2002). This
bottom to top original contact relationships between the basalt, the ore and the overlying
sedimentary cover is only preserved locally at the Aşıköy mine area (cf. Çakır et al., 2006;
Altun et al., 2015). Basaltic flow intercalations are common in the lower levels of the black
shale-subgraywacke unit and vice versa (e.g., Tüysüz, 1986; Pehlivanoğlu, 1985), suggesting
contemporaneous deposition of the lower segment of the black shales and the upper segment
of the basalts (e.g., Çakır, 1995) in their original depositional setting. The ore bodies and their
adjacent lithologies are steeply tilted (60-85°) and locally deformed, as seen by the black
shale-subgraywacke and the pillow lava contact at the batters and berms of Bakibaba open pit
(Fig. 3) and is also reported by Altun et al. (2015). According to Ustaömer and Robertson
(1995), the upper contacts of the basalts with the sedimentary cover are commonly
undeformed sedimentary and conformable contacts. These records of undeformed segments in
the basalt-shale contacts, both at the surface and the drifts in the Bakibaba region, support a
primary sedimentary and late stage tectonic character for the contacts probably related to the
different rheological behavior of these lithologies during the emplacement of the Küre
Complex (cf. Çakır, 1995).

The pillow lavas of the basaltic sequence gradationally changes into non pillowed,
massive flows downwards, and the well-developed pillows decrease successively upwards,
with the increasing hyaloclastites towards the black shale-subgraywacke contacts (cf. Güner,
1980; also see Fig. 2b). The primary mineralogy of the basalts comprises small lath-shaped (somewhat microlitic) plagioclase, interstitial clinopyroxene and opaque phases accompanied by chlorite and secondary amphibole after clinopyroxene. Ophitic-subophitic and/or variolitic textures are common in basalts (e.g., Figs. 4a and b). Güner (1980) indicates that the whole basaltic sequence has been subjected to considerable hydrothermal alteration. Indeed, an advanced chloritic alteration is especially common in the basalts adjacent to the massive sulfide lenses. The mafic phases are almost totally replaced by the chlorite and plagioclase is generally absent (Figs. 4c, d, e, f) being preserved only in some samples as thin laths of plagioclases (Fig. 4d). Secondary quartz and calcite are ubiquitous as infills and veinlets. The subgraywacke of the overlaying black shale-subgraywacke unit includes quartz, feldspar, rock fragments, chert and opaque phases embedded in a matrix of sericite, chlorite and limonite, whereas the almost unfossiliferous and very fine grained black shale is composed of illite, quartz, chlorite, siderite, and muscovite with accessory opaque phases (cf. Güner, 1980; Altun et al., 2015 and references therein).

The Küre VMS deposits contain massive, stockwork and disseminated ore, the former mainly located along the faults and contact planes between the basaltic lava (İpsinler Basalt) and the siliciclastic sedimentary rocks (Akgöl Group/Formation; Fig. 2). The originally uppermost basaltic lavas seems to be mostly overlain by massive sulfide ore bodies. The bun-like or loaf-shaped masses of high grade massive sulfide are dominantly pyrite and chalcopyrite, and are commonly underlain by stockworks and disseminated pyrite-rich sulfides, quartz and carbonates (cf., Güner, 1980; Kuşçu and Erler, 2002; Altun et al., 2015).

Previous studies report that the chalcopyrite rich segment of the ore body is controlled by pre-existing faults (e.g., Bailey et al., 1966; Kuşçu and Erler, 2002). Kuşçu and Erler (2002) described cataclastic, thermal-annealing and fracture-filling textures in the pyrites of the massive sulfide mineralization interpreting deformational and late deformational stages of
prograde metamorphism at greenschist (or even amphibolite) facies conditions, probably related to regional thrusting and folding of the Küre ophiolite. They also note that their observation is in good agreement with observations of Aydın et al. (1986), who report the metamorphosed nature of the black shale-subgraywacke unit at greenschist facies conditions, indicating that the Küre VMS was also metamorphosed at this facies conditions.

The Aşıköy deposit contains 11.8 million tonnes of pyrite ore with average grades of 1.69% Cu and 39.41% S (e.g., Yiğit, 2011), whereas the Bakibaba deposit contains 1.5 million tonnes of ore comprising average grades of 3.42% Cu and 43.49% S (Demirbaş and Ağaoğlu, 1980; Çağatay et al., 1980). Co, Au and Ag grades reported from both deposits are 0.3%, 2.48 g/t and 10 g/t, respectively (cf. Çağatay et al., 1980; Yiğit, 2011). The much smaller, but more Cu-rich Toykondu deposit, contains 176 000 tonnes of ore with an average ore grade of 4% Cu and 40.6% S (Çakır, 1995). Recently, Altun et al. (2015) reported huge additional ore reserves from Mağaradoruk deposit (up to 29 millions of tonnes) with average grades of 5.07%Cu, 0.56% Co, 2.10 g/t Au and 10.38 g/t Ag.

Current age constraints on the timing of mineralization comes from the deposit hosting stratigraphy. It has been suggested that the formation of the Küre VMS deposit is pre-Middle Jurassic (Kovenko, 1944; Güner, 1980). Based on their Rb-Sr and K-Ar radiometric ages, Terzioğlu et al. (2000) suggested existence of at least two different types of basalts in the Küre Complex, both in origin and in age (Bajocian; 170±6 Ma, 168±5 Ma and Berriasian-Valanginian; 137±3, 136±6 Ma; analytical media unspecified). These results were in good agreement with previous findings of CENTO group (Sarıcan, 1968) suggesting two major basaltic volcanic pulses clearly separated in time (cf. Güner, 1980). However, Kozur et al. (2000), on basis of stratigraphic relationships, noted that the mafic volcanic rocks in the Küre Complex should be older than Late Triassic (possibly middle Triassic). They disagreed with the Bajocian ages due to the low potassium contents of basalts and possible hydrothermal
alteration effects and regarded the much younger Berriasian-Valanginian aged basalts as products of a later extensional process. Çakır et al. (2006) similarly suggested a careful approach to these data due to the probable low-temperature alteration effects, although noting that these are also supported by the paleontological data of Önder et al. (1987). The age interval pronounced for the black shale-subgraywacke ranges from Lower Permian to early Jurassic (cf. Koç et al., 1995; early Jurassic - Ketin, 1962; Yılmaz, 1979,1980; Permian - Güner, 1980; pre-early Jurassic - Pehlivanoğlu, 1985). However, correlations with the surrounding strata and few fossil findings suggest a Late Triassic to Middle Jurassic interval (Kovenko, 1944; Ketin, 1962; Aydınc et al., 1986, 1995; Önder et al., 1987), as the older Upper Carboniferous to Lower Permian palynomorphs reported earlier (Kutluk and Bozdoğan, 1981) are largely considered to be reworked material from older lithologies (Yılmaz and Şengör, 1985; Ustaömer and Robertson, 1994; Kozur et al., 2000; Çakır et al., 2006).

3. Sampling and Analytical Methods

A total of seventeen samples were collected from the Küre VMS deposits. Nine of these samples are taken from different levels of a deep drill hole (M-256), two of them are from outcrops and six of them are from drifts. A schematic summary of the sample locations, types, depths, and lithologies are given in Figure 5. Each sample group represents different segments of the deposit. The drill hole M-256 presents a very thick black-shale sequence due to the tilted and folded orientation of the strata. This sequence is followed by a relatively thin massive and stockwork sulfide mineralization presumably marking originally a thinning distal edge of a larger massive sulfide lens. The ore samples gathered from this drill hole are composites from 961.50 to 968.10 meters. The drift samples are from 645 to 710 m levels, whereas the outcrop samples are collected from the batters and berms in the Bakibaba pit.
Twelve pieces of ore samples were selected from the massive and the stockwork ore and mounted in 1 inch diameter epoxy plugs and grinded-polished for both reflected light microscopy and micro-analytical studies. Also, six doubly polished thin sections (27x46 cm and ca. 100–200 μm thick) were prepared for microthermometric studies. These samples were selected from the suitable stockwork networks where several stages of overprinting quartz and calcite are found as veinlet fillings. The samples collected for Re-Os geochronology are selected from the massive sulfide ore, the sulfide-rich parts of the stockwork and the overlying black shale-subgraywacke unit. Six pyrite-rich sulfide concentrates were prepared and analyzed from the massive and the stockwork ore. The selected sulfide ore samples from the massive sulfide lenses and the stockwork ore were crushed and sieved to obtain five different size fractions. This is done to help to free different sizes of pyrites from their surrounding interlocking media to ease the handpicking process. Approximately 2000 mg of mineral separates rich in pyrite is obtained by handpicking for each sample. Three 0.2-1 meters of fine-grained and unmineralized black shale cores were also selected from the M-256 drill hole for whole-rock Re-Os analysis. Although there are large black shale-subgraywacke outcrops in the area (see Figure 3), core samples from M-256 drill hole are selected for analysis in order to avoid effects of weathering and oxidation.

The wavelength-dispersive spectrometry (WDS) analyses on selected sulfide minerals were carried out by a Cameca SX-100 electron-probe micro-analyzer (EPMA) installed at the Department of Earth and Environmental Sciences, Ludwig-Maximilians-University of Munich (Germany). The accelerating voltage, the probe current and the beam spot size were set to 15 keV, 40 nA and <1 μm, respectively. Pure metals were used as standards for Cu, Se, Te, Cd, Co, Ag, Au and Bi, whereas the rest of the standards were sphalerite for Zn and S, GaAs for As, Sb$_2$S$_3$ for Sb, and PbS for Pb. The X-ray lines used in the analyses are Lα for As, Se, Sb, Te, Cd and Ag, Kα for S, Fe, Ni, Zn, Co and Cu, and Mα for Au, Pb and Bi.
Microthermometric studies were carried out at the Fluid Inclusion and Ore Microscopy-Petrography Laboratory in the Department of Geological Engineering, Dokuz Eylül University (İzmir, Turkey). The studies were performed by a Linkam THMGS-600 heating-freezing stage mounted on a binocular Leica DMLP microscope with a maximum magnification of 1000X. The system is equipped with a Linkam TMS94 temperature controller and LNP94/2 liquid nitrogen pump. The temperature range of the stage used was \(-196^\circ\text{C}\) to +600°C with a temperature stability and accuracy of \(\pm0.1^\circ\text{C}\). Stage calibration was controlled by a set of standard resistances (for known temperatures values of -196.5, -44.5, 0.0, 117.2, 557.7 and 336.7 °C) provided by the Linkam Scientific Instruments Limited.

Six pyrite and two black shale samples were analyzed for their Re-Os abundances and isotope compositions. The analyses were performed at the Laboratory for Sulfide and Source Rock Geochronology and Geochemistry at the Durham Geochemistry Centre at Durham University, UK. The analytical protocols used follow those outlined by Selby et al. (2009; pyrite), and Selby and Creaser (2003), and Cumming et al. (2013; shale). In brief, \(~50\) mg of pyrite and \(~1\) g of black shale were loaded into a carius tube with a known amount of a tracer solution comprising \(^{190}\text{Os}\) and \(^{185}\text{Re}\). For the pyrite samples \(3\) mL of \(11\text{N HCl}\) and \(6\) mL of \(15\text{N HNO}_3\) was added to the carius tube. For the black shales samples \(8\) mL of \(0.25 \text{g/g CrO}_3\) in \(4\text{N H}_2\text{SO}_4\) was added to the carius tube. The carius tubes were sealed and placed in an oven at \(220^\circ\text{C}\) for \(48\) hours. For both pyrite and black shale samples Os was isolated and purified from the acid medium using solvent extraction (\(\text{CHCl}_3\)) and micro-distillation methods. For the pyrite samples the Re fraction was isolated using anion chromatography. The Re fraction for the black shale samples was isolated using a \(5\text{N NaOH:Acetone}\) solvent extraction followed by anion chromatography. Isotopic measurements were performed using a ThermoScientific TRITON mass spectrometer with static Faraday collection for Re and ion-counting using a secondary electron multiplier in peak-hopping mode for Os. Total procedural
blanks for pyrite analysis are 3.0 ± 0.2 pg Re and 0.10 ± 0.02 pg Os (1 SD, n = 2), with an average
\(^{187}\text{Os}/^{188}\text{Os}\) 0.25 ± 0.02. For the black shale analysis the procedural blanks are 14 ± 1 pg Re and 0.50 ± 0.1 pg Os (n = 1), with \(^{187}\text{Os}/^{188}\text{Os}\) 0.25 ± 0.10. In-house Re (\(^{185}\text{Re}/^{187}\text{Re} = \)) 0.5983 ± 0.001; n = 2) and Os (DROsS, \(^{187}\text{Os}/^{188}\text{Os}\) = 0.16094 ± 0.003; n = 2) solutions run during the course of this study are both identical, and within uncertainty, to those previously reported (Du Vivier et al., 2014 and the references therein).

4. Results and Discussion

4.1. Sample Paragenesis and Ore Textures

As the main focus of this study is the Re-Os geochronology from the LLHR sulfides of the Küre VMS deposit, it is important to understand the paragenetic sequence and succession in the samples studied. Thus, we have completed detailed ore microscopic studies from the samples of the drill hole M-256 and the drifts. Çağatay et al. (1980), whom studied ore samples from both the Bakibaba and Aşıköy deposits, interpreted that the ore paragenesis, textures and structures of both mineralizations are similar and present a mineral paragenesis rich in primary sulfides, minor oxide phases as well as secondary sulfides, oxides and carbonates. The sample paragenesis we observed in our samples is similar to the previous work (e.g., Çağatay et al., 1980; Altun et al., 2015) with minor differences.

The samples investigated in this study are mainly dominated by pyrite and chalcopyrite that are accompanied by other sulfides, oxides and native metals. The massive ore samples are almost free of gangue phases, whilst the stockwork ore samples include veinlets of mainly quartz and calcite with accompanying opaque phases. Three distinct stages/processes are observable from the samples investigated. Chromite, anatase, hematite (Hm) and magnetite (Mgt) comprise the accessory pre-mineralization opaque phases in the basaltic host rocks. The ore assemblage is dominated by pyrite (Py) in all ore types, which is
accompanied by subordinate chalcopyrite (CcpI and CcpII), sphalerite (SphI and SphII),
cobaltite (Co), bravoite (Brv), marcasite (Mrc), melnikovite-pyrite (Mel-Py), bornite (Bo),
hematite (Hm) and native gold (Au). Quartz (Qz) and calcite (Cal) are abundant in stockwork
ore whereas chlorite (Chl) is found in basalts as an alteration mineral after ferromagnesian
silicates. Deformation and recrystallization textures are attributed to post-mineralization
folding, shearing, regional metamorphism and ophiolite obduction.

The pre-mineralization accessory opaque phase magnetite is partially and/or totally
replaced by hematite (Fig. 6a). The hematite also shows flaky anhedral or needle-like/aciccular
forms and is occasionally found in the quartz veinlets and/or in the euhedral pyrite grains of
the stockwork ore as small clots and inclusions (Fig. 6b). Pyrite is the oldest and the most
dominant phase of both the massive and the stockwork ore. In the massive ore, pyrite (Py) is
crystallized as euhedral, subhedral and anhedral aggregates ranging in size of hundreds of
micrometers to millimeters (Fig. 6c). Pyrite grains are porous, relatively zoned and
cataclastic, associated with the brittle deformation. Although chalcopyrite is by far the second
most abundant sulfide in both ore types, it is more abundant in the massive ore than in the
stockwork ore. The pyrites are embedded in a chalcopyrite dominated matrix (CcpI; Fig. 6c)
and replaced by chalcopyrite and other sulfides along their edges and fractures. As reported
by Kuşçu and Erler (2002), it appears that some fracture-filling chalcopyrite were formed as a
result of remobilization during late-stage deformation. Sphalerite can be divided into two
generations as SphI and SphII; the former showing intergrowths of chalcopyrite (CcpII) also
known as “chalcopyrite disease”, and the latter being free of chalcopyrite (Figs. 6d, e and f).

Bornite is present in trace amounts in massive ore. Where it is present, intergrowths of bornite
with chalcopyrite exhibit complex exsolution textures (CcpII; Figs. 6f and g). The pyrites are
also usually found interlocked with mostly euhedral/subhedral cobaltite grains (Co; Fig. 6h).
In these pyrites, linear zones of bravoite (Brv; Fig. 6h) separates the individul layers of pyrite.
Melnicovite-pyrite partially replaces pyrite (Py) and chalcopyrite (Ccpl) and is replaced by pyrite, cobaltite and marcasite (Figs. 7a, b and c). Native gold is mainly found at the borders of pyrite and chalcopyrite (Ccpl) and as minute inclusions in pyrite (Figs. 7d, e and f).

4.2. Compositions of the Main Sulfide Phases

Selected compositional data from the main ore phases (pyrite, chalcopyrite and sphalerite) are given in Table 1. Pyrite contains average values of 53.23 wt % S and 46.71 wt % Fe (n = 45). The pyrites correspond to the calculated structural formula (Fe0.97-1.03Cu0.00-0.02Zn0.00-0.01Co0.00-0.03)(As0.00-0.01S1.97-2.00). The micro-chemical data also shows elevated contents of Co, Ag, Au and As in some of the pyrites. The Co content reaches up to 1.39 wt % (0.38 wt % on avg.), while the Ag and Au contents in pyrites reaches 0.09 and 0.11 wt % (0.08 and 0.11 wt % on avg.), respectively. Up to 0.57 wt % of As (avg. 0.16 wt %) is detected in pyrites. There is a significant negative correlation between Co and Fe (r = -0.565) and a significant positive correlation between Co and As (r = 0.625) showing substitution of Co for Fe and introduction of As in pyrite. Further Co-Fe exchange and As introduction is also visually traceable with the existence of cobaltite (CoAsS) intergrowths within pyrite (Fig. 6h).

The chalcopyrites include 34.70 wt % S, 30.24 wt % Fe and 33.57 wt % Cu on average (n=22). The calculated structural formula of chalcopyrite is (Cu0.91-1.00Fe0.99-1.03Zn0.00-0.01)S1.99-2.05.

Sphalerites mainly comprise 33.10 wt % S, 60.42 wt % Zn and 3.41 wt % Fe in average (n = 5). The Cu contents in the sphalerite are also significantly high (1.16-3.77 wt%) leading to a calculated structural formula of (Zn0.84-0.93Fe0.04-0.10Cu0.02-0.06)S1.00-1.02. Zn/Cd ratio of the sphalerite has been previously tested several times as an indicator for the genesis of the ore deposits (Jonasson and Sangster, 1978; Xuexin, 1984; Brill, 1989; Xu, 1998). The Cd
content of the sphalerite mainly depends on the Cd/Zn ratio, ligand activities, and temperature of the ore forming fluids (Schwartz, 2000). The Zn/Cd ratios of the analyzed Küre VMS deposit sphalerites range in between 372 to 1417 with majority of the calculated ratios between 372 and 625 and an arithmetic average of 677. The sphalerite with the highest Zn/Cd ratio of 1417 presents a very low Cd content (0.04 wt %). This sphalerite is also richer in Fe (5.55 wt %) than the rest of the analyzed sphalerites (Fe contents between 2.41 to 3.5 wt %).

The Zn/Cd ratios calculated from the sphalerites are presented in Figure 8 for comparison with the data from previous studies elsewhere and are in good agreement with the previous Zn/Cd data from volcano-sedimentary associations, volcanogenic massive sulfide deposits and their modern analogues. The ratios are also compare well with the whole-rock Zn/Cd ratios from basalts from elsewhere and partially correspond with mineralization systems including basaltic metal sources.

4.3. Fluid Inclusions Petrography and Microthermometry

The basaltic pillow lava host presents extensive chlorite alteration including fine-grained opaque phases. The quartz and calcite bearing veinlets comprising the stockwork ore in the chloritized host shows multiple episodes of hydrothermal fluid input with overlapping and overprinting quartz and calcite occurrences. We have determined two main episodes of fluid input from the stockwork ore samples that is interpreted by differing and overprinting/cross-cutting quartz occurrences and opaque mineral precipitation. The early quartz veinlets are >500 μm in thickness, and are cross-cut by thinner late-stage veinlets (Fig. 9a; Qz1 and Qz2 veinlets, respectively). The early-stage veinlets are also divided into two quartz occurrences overprinting each other (Fig. 9b; 1a and 1b, respectively). The former quartz occurrences (1a) in the early stage Qz1 veinlets include larger (>300 μm) and zoned quartz grains and limited opaque phases such as hematite (Figs. 9c and d). The latter quartz
phase in the Qz1 veinlets (1b) comprise finer (microcrystalline) quartz grains and introduction of more extensive opaque phases representing the sulfide mineralization in the stockwork ore.

The thinner Qz2 veinlets cross-cutting/overlapping the Qz1 veinlets also include sulfide mineralization (Fig. 9a). Calcite seems to be the latest phase in the stockwork veinlets as it crosscuts the former quartz occurrences and the ore minerals (Fig. 4d).

Microthermometric measurements are performed on fluid inclusions from quartz dominated stockwork ore obtained from the core samples of drill hole M-256 in the interval between 962 and 968 m above sea level. The fluid inclusions in the quartz veinlets of the stockwork (either Qz1 or Qz2) are scarce, extremely small and it is not possible to do microthermometric studies in most of the inclusions. The acquired microthermometric results from available fluid inclusions are given in Table 2. Inclusions from the quartz samples of stockwork ore are generally irregular-shaped inclusions and typically range in length from 5 to 20 μm. Petrographic examination of the thin section shows two-phase inclusions in quartz with vapor/liquid ratios between 4 to 28%. We have not observed any diagnostic features related to the secondary fluid inclusion formation. Due to the small sizes and scarcity of the fluid inclusions, it is also not possible to group and correlate fluid inclusions according to their quartz host phases (e.g., Qz1 and Qz2). However, two populations of fluid inclusions are determined solely on the base of homogenization temperatures versus salinity diagram (Fig. 10). The vapor bubbles from first population are variable in size and occupies about 20% of the inclusion volume (up to 30%). Fluid inclusions from first population homogenize to the liquid phase between 270.9°C and 317.0°C, with a mean of 289.9°C (Fig. 10). The final melting of the ice occurred with a final temperature range of -3 to -0.5°C which yielded salinities between 5.0 and 0.9% wt NaCl equiv. In second population, total homogenization into the vapor phase has been observed between 161.5 and 245.7°C with an average of 202.6°C. These inclusions showed final ice-melting temperatures varying between -2.4°C and
−1.2 °C which indicates salinities from 4.0 to 2.1% wt NaCl equiv. The average first melting temperatures (T_{mf}) of first and second population are at −48.2 °C and −37.2 °C, indicating a H₂O-CaCl₂-KCl-MgCl₂ ore-forming hydrothermal fluid system (Goldstein and Reynolds, 1994; Shepherd et al., 1985).

4.4. Re-Os Isotopes

The Re and Os concentrations and isotope compositions of the six separated pyrite-rich concentrates and two black shale samples are given in Table 3. The Re concentrations of the sulfides range between 132.9 to 630.9 ppb and total Os values range between 250.6 to 1175.2 ppt. In comparison, the black shale samples possess very low Re contents (0.63 and 1.15 ppb) and low Os (157.5-195.5 ppt) concentrations. The sulfide 187Re/188Os and 187Os/188Os ratios show wide ranges from 44545.1 to 329370.4 and 126.1 to 1614.1, respectively. The 187Re/188Os ratios for the black shales are 20.1 and 29.9 and the 187Os/188Os ratios obtained are 0.5171 and 0.5402. All sulfide samples have large 187Re/188Os and highly radiogenic 187Os/188Os ratios indicating the bulk of the 187Os in the sample is radiogenic (Table 3). The Re and Os data of the sulfide concentrates indicate that the sulfides had minimal common Os at the time of formation. As a result, the initial 187Os/188Os value cannot be determined to investigate the source of Os and by inference the ore metals. In addition to the samples possessing 187Re/188Os values much greater than 5000 and highly radiogenic 187Os/188Os resulting in highly correlated uncertainties between the isotope ratios (rho; Table 3), two of the sulfide samples present widely different 187Re/188Os and 187Os/188Os values. As such no geological age using a traditional plot of 187Re/188Os vs. 187Os/188Os could be determined from the Re-Os data for all six samples (Fig. 11a).

The Re-Os data for the sulfide samples have features consistent with the low level highly radiogenic sulfides (LLHR; Stein et al., 2000). For such samples it is suggested that the
Re-Os isochron age should be determined in 187Re-187Os (radiogenic 187Os) space to avoid uncertainties from the very low and difficult determinations of 188Os (Stein et al., 2000; Selby et al., 2009; Nozaki et al., 2010). The 187Osr abundance (Table 3) was achieved using the initial 187Os/188Os value calculated from using four of the six samples that display a positive correlative between 187Re/188Os vs. 187Os/188Os (Fig. 11b). The regression of the Re-Os data for the four samples yield an age of 176 ± 22 Ma (initial 187Os/188Os = -6 ± 37; MSWD = 11.2). A 187Re-187Osr plot of Küre sulfides yields the same age, with uncertainty, as the traditional Re-Os plot (175 ± 19 Ma), but with significantly less scatter (MSWD = 0.23, Fig. 11c). The 187Re-187Osr plot also indicates the near absence of common 187Os (initial 187Osr, 2 ± 68 ppt). Additionally the 187Re and 187Osr data permit model ages to be determined. Model ages for the four samples are nominally different, but identical within uncertainty (Table 3). A weighted average of the model ages is 176 ± 11 Ma (6.1%, with a confidence level of 95%; MSWD = 0.16; Fig. 11d). All of these Re-Os data suggests a nominal age of upper Toarcian (uppermost early Jurassic). The remaining two discordant samples (BK-US and M256/V1) present largely different model ages (320.8 ± 37.4 and 138.2 ± 7.2 Ma, respectively; Table 3). The older model age is from an outcrop sample with disseminated ore and the younger one is from a stockwork sample from the drill hole.

Two samples selected and analyzed from the black shale-subgraywacke strata, overlying the massive sulfide lens, possess low Re values and are not useful for geochronological constraints. However, the data may facilitate to make a preliminary approach to the initial Os isotope ratio [187Os/188Os$_{o(0)}$] of the contemporaneous seawater, as the chemical and isotopic compositions of marine sediments/precipitates are expected to reflect the conditions of the seawater in which they had been accumulated (e.g., Cohen et al., 1999). The initial Os isotope ratios of the black shale samples at 180 Ma are 0.45 and 0.46.
4.5. Age of the Sulfide Mineralization and Implications

The late Paleozoic to early Mesozoic paleogeographic history of the Tethyan realm in northern Turkey is an important topic of debate. Within this debate, the geodynamic setting and geological history of the Sakarya Terrane that include the Küre and the Karakaya Complexes is extensively discussed in the literature (cf. Göncüoğlu, 2010 and the references therein; Fig. 12a). In summary, the Sakarya Terrane is assumed to have rifted from Gondwana and accreted to Eurasia during the Late Palaeozoic (Robertson and Ustaömer, 2009). In this context, the Karakaya Complex is believed to represent a Permo-Triassic accretionary complex sliced with other Late Paleozoic-Triassic accretionary complexes of the Paleotethyan active margin (Göncüoğlu, 2010). The Mid-Triassic-Mid Jurassic Küre Complex on the other hand, is also correlated with the Karakaya Complex and is generally regarded as a back arc basin that has opened behind the volcanic arc (e.g., Robertson and Ustaömer, 2009).

Previous researchers has provided various paleogeographic models and reconstructions of the region. These models regard the Küre ophiolitic complex as a remnant of a subduction zone, mainly conflicting on either the interpretation of the subduction direction or the setting of the contemporaneous Küre and Karakaya basins. In one of the models, the Küre Complex is described as the remnant of the southward subducting Late-Paleozoic-Triassic Paleo-Tethys, proposing that the units of the Karakaya complex originated from a rift-related narrow oceanic marginal basin (Bingöl et al., 1975, Şengör, 1979, Şengör and Yılmaz, 1981; Şengör, 1984; 1985; Şengör et al, 1980a,b; Şengör et al, 1984; Yılmaz et al, 1994 a, b.; Okay and Mostler, 1994; Genç and Yılma, 1995; Yılmaz et al., 1997; Yiğitbaş et al, 1999; Kozur et al., 2000). In a second model, the Karakaya Basin is contrastingly interpreted as the remnant of the Paleo-Tethys, and the Küre Basin as the small back-arc basin that opened by the northward subduction of the Karakaya oceanic lithosphere (e.g., Pickett et al., 1995; Pickett and Robertson, 1996; Ustaömer and Robertson, 1994; 1995; 1997; 1999;
Okay et al., 1996; Kozur et al., 2000). According to Şengör and Yılmaz (1981) opening and closure of Karakaya Ocean is restricted in the Triassic. The advocates of the second model asserted that Küre back-arc basin was opened during Permian to early Jurassic by the northward subduction of the oceanic lithosphere of the Karakaya Ocean, which is regarded as a large long-lived (Devonian to Triassic) Paleo-Tethyan ocean (cf. Ustaömer and Robertson, 1994; Kozur et al., 2000 and references therein). A third model (Okay and Tüysüz, 1999; Okay, 2000) disparately considers both oceanic basins as relics of the same single large Paleo-Tethys and suggests that they have separated with later events (Kozur et al., 2000). The Karakaya complex is interpreted as a subduction-accretion complex, which is being formed by the northward subduction of Karakaya oceanic lithosphere beneath Laurasia by Okay (2000). Kozur et al. (2000), arguing on the grounds of the fossil and stratigraphic data, suggest that none of the assumptions and suggestions in all these three models are fully correct. These authors remark that: (1) the Karakaya Basin is a latest Permian–Upper Triassic oceanic rift basin, (2) the Küre Basin is a Lower Triassic–Middle Jurassic southward subducting back-arc basin, and (3) no field data is available on the northward subduction of a combined Karakaya-Küre Ocean (a single and huge Carboniferous–Middle Jurassic Paleo-Tethys). More recent, newer reconstructions for the region involve a multi-armed (Paleotethys, Küre, Meliata, Maliac, Pindos, etc) Late-Paleozoic-Triassic Tethys with an additional oceanic branch between the Taurides (s.s.) and the Anatolides with no clear consensus on the number, locations, life-spans and subduction polarities of these oceanic branches/marginal basins and the Karakaya Complex as a product of the closure (cf. Göncüoğlu, 2010 and the references therein; Fig. 12b).

The Re-Os isotopic study of the LLHR sulfides from the Küre VMS Deposit has given a nominal age of upper Toarcian (uppermost early Jurassic) for sulfide mineralization. Both the Küre Complex and the Küre VMS deposit were previously interpreted to be subjected at
least to regional greenschist facies conditions during/after their emplacement/accretion (e.g., Aydın et al., 1986; Kuşçu and Erler, 2002), and metamorphic processes are known to disturb the Re-Os systematics, especially for minerals such as sphalerite and pyrrhotite (e.g., Morelli et al., 2004, 2010; Nozaki et al., 2013). However pyrite and chalcopyrite from samples that underwent greenschist facies metamorphism, can yield reliable Re-Os ages preserving the primary Re-Os isotope composition from the time of its formation (Brenan et al., 2000; Selby et al., 2009; Nozaki et al., 2013). Given that all of the sulfides analyzed for the Re-Os isotopes in this study are from the handpicked separates of pyrite-chalcopyrite dominated sulfide mineralization, we interpret these results to represent original depositional ages. Although, we cannot totally rule out minor (e.g., overlooked) presence of any other sulfides that may slightly disturb the Re-Os isotope system, both isochron plots in the $^{187}\text{Re}/^{188}\text{Os}$ vs. $^{187}\text{Os}/^{188}\text{Os}$ and the $^{187}\text{Re}-^{187}\text{Os}^\prime$ space yield very similar ages within their uncertainties, and are interpreted to represent the depositional age of sulfide mineralization. The results are also in agreement with the previous field based pre-Middle Jurassic interpretation of Kovenko (1944), and the Permian-early Jurassic age interval pronounced for the lifespan of Küre back-arc basin (e.g., Ustaömer and Robertson, 1994). In light of the likely primary upper Toarcian age for the mineralization, the simplest inference is the continuation of the extensional regime in the Küre Basin during setting of the VMS deposition. However, the Re-Os geochronological data also supports the second paleogeographic model discussed above (e.g., Pickett et al., 1995; Pickett and Robertson, 1996; Ustaömer and Robertson, 1994; 1995; 1997; 1999; Okay et al., 1996), which interpreted the Küre Basin as a back-arc marginal basin of a northward subducting Karakaya Ocean; this appears to be the more likely model for the setting of the Küre VMS deposit. Data from an outcrop sample and a drilled stockwork sample with largely different model ages that are rejected from the isochron plots (BK-US; 320.8 ± 37.4 and M256/V1; 138.2 ± 7.2 Ma,
respectively) may be affiliated with some other pyrite crystallization events prior to and postdating the main sulfide deposition. Unfortunately, our data does not allow us to make a correlation between the ages and the chemical compositions of the pyrites. Hence, we prefer to avoid commenting on the nature of the older model age of the outcrop sample. However, the younger pyrite age from the stockwork may be questioned in relation to the fluid inclusions microthermometry from the quartz veinlets of the stockwork.

In volcanogenic massive sulfide (VMS) systems, physicochemical characteristics of fluid inclusions depend on PVTX conditions of the location where the fluid inclusions are trapped within the hydrothermal system. In VMS environment, the characteristics of the fluid inclusions can vary systematically from location to location and even within the same paragenesis and the fluid inclusion temperatures in VMS stockworks are typically in the range 200-400°C (Hannington et al., 1998; Lüders et al., 2001). Above the two-phase zone, along the rising plume, fluid inclusions are liquid-rich with salinity slightly higher than or lower than that of seawater, and have homogenization temperatures between 200 and 400°C (Steele-MacInnis et al., 2012). In Küre, the fluid inclusions of quartz from the stockwork zone are two-phase inclusions. Most of the measured homogenization temperatures fall in between 200-300 °C (n=17). The inclusions are liquid-rich and contain vapor bubbles occupying about up to 30 volume percent of the inclusion. The lack of coexisting vapor-rich and halite-bearing inclusions indicates ore formation in shallower subsurface near the seafloor vents (up to 0.5 km in depth) where the inclusions are liquid-rich. The low salinities reflect mixing between sea water and phase separated brine and/or vapor from the deeper part of the system. The similarity of fluid salinity to normal seawater (3.5 wt % NaCl equiv) further suggests the input of a large amount of cold seawater into the Küre hydrothermal system. These data show that the bulk of the microthermometric data is in good agreement with the above given literature. However, lower homogenization temperatures below 200 °C (n=4) and the younger
pyrite age from the stockwork may still suggest that at least some of the stockwork veinlets in
the deposit are younger and are related to the post-VMS deformation/mineralization events.

The new depositional age data partially contradicts with previous arguments of Kozur et al. (2000) that suggest older than Late Triassic (possibly middle Triassic) age for the mafic
volcanic rocks of the Küre Complex. However, we must note that the new isotopic data we
present gives the direct age of deposition for the Küre VMS Deposit, and may also imply an
upper age limit for the basaltic volcanism (Fig. 1c). We may suggest that a submarine
volcanic extrusion episode continued up to upper Toarcian, reaching a period of stagnation,
allowing a continuous and long-term seawater circulation and hydrothermal fluid discharge
for the formation of the Küre sulfide mounds. The Middle Jurassic ages obtained from the
basalts (Bajocian; 170±6 Ma and 168±5 Ma; Terzioğlu et al., 2000) are also in good
agreement with the Re-Os isotopic ages obtained in this study within errors. It appears with
the current data that the beginning of the closure of the Küre Basin had not been initiated
before the uppermost early Jurassic. Hence, the early Cretaceous (Berriasian-Valanginian:
137±3, 136±6 Ma) ages by Terzioğlu et al. (2000) present a different late episode of volcanic
activity, as indicated by previous researchers (e.g., Sarıcan, 1968; Güner, 1980; Terzioğlu et

We were unable to constrain the depositional age of the black shale-subgraywacke
strata of the hemipelagic muds and terrigenous turbidites that are interpreted to blanket the
Küre ocean basin following volcanic and hydrothermal activity (e.g., Ustaömer and
Robertson, 1994). However, the depositional age for the siliciclastic sediments of the Küre
Complex has been previously reported to span mainly in a Late Triassic to Middle Jurassic
interval (Kovenko, 1944; Ketin, 1962; Aydı̇n et al., 1986, 1995; Önder et al., 1987). Kozur et
al. (2000) managed to further confine the age of the lower and middle segments of the
siliciclastic sediments from middle Carnian to middle Norian interval (Late Triassic). They
also noted that the age interval of the upper segment should be between middle Norian and Late Jurassic. Hence, the proposed depositional age range of the siliciclastic sediments and the seafloor volcanism prior to the deposition of the sulfides seem to partially overlap (Fig. 12c). This is in good agreement with the previously presented lithological evidences on contemporaneous deposition of the lower segment of the organic-matter rich sediments and the upper segment of the basaltic volcanic rocks (e.g., Tüysüz, 1986; Pehlivanoğlu, 1985; Çakır, 1995) and again may support a stagnation period in the submarine volcanic extrusion during the upper Toarcian.

The $^{187}\text{Os}/^{188}\text{Os}$ ratios of the sulfide samples are highly radiogenic and do not allow us to propose a source for Os. On the other hand, the large variations in the initial Os isotope ratios [$^{187}\text{Os}/^{188}\text{Os}_{(i)}$] of seawater are usually attributed to inputs by continental, mantle (volcanic and hydrothermal), and cosmogenic events, the former one resulting in very radiogenic (1.0-1.5; Peucker-Ehrenbrink and Jahn, 2001) and the latter two concluding in very unradiogenic Os isotopic ratios (e.g., 0.12-0.13; Allègre and Luck, 1980) (Tejada et al., 2009). The very limited $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ data (0.45 and 0.46, calculated for 180 Ma) from two black shale samples blanketing the Küre VMS deposit are in agreement with the wide $^{187}\text{Os}/^{188}\text{Os}_{(i)}$ interval of the Early Jurassic seawater (from ~0.4 to ~1.0; Cohen et al., 2004), coinciding with the lower limit range. However, the available data is statistically inadequate to make a significant deduction. Hence, the reply to this question currently stays unresolved. More data from the black shale strata is needed to constraint the Os isotopic composition of the contemporaneous seawater and the source(s) of Os in the depositional environment of the Küre VMS deposit.
5. Conclusions

This study presents new paragenetic, compositional, microthermometric and geochronological datasets from the Küre VMS deposit located in Central Pontide region, northern Turkey. The massive and stockwork ore selected for the dating studies were pyrite-dominant with subordinate chalcopyrite, sphalerite and other sulfide species. Stockwork ore included quartz and calcite gangue veinlets, while the massive ore is almost free of gangues. Mineral chemistry of the sphalerites show typical ranges described for the ancient volcanogenic massive sulfide deposits/mineralizations and their modern analogues elsewhere. Microthermometric data provided from the quartz gangue of the stockwork ore showed low to intermediate homogenization temperatures (T_h) and low salinities, also being mostly in good agreement to the ranges encountered in volcanogenic massive sulfide mineralizations. The average first melting temperatures (T_{mf}) obtained from the microthermometry pointed out a $\text{H}_2\text{O-CaCl}_2-\text{KCl-MgCl}_2$ ore-forming hydrothermal fluid system. The salinity data (slightly greater or less than that of seawater) obtained from the two-phase inclusions and the lack of coexisting vapor-rich and halite-bearing inclusions are used to constraint a depth for the sampled stockwork ore formation, which is presumably at a shallower subsurface environment near the seafloor vents (up to 0.5 km in depth).

This first attempt of Re-Os dating of the LLHR sulfides from the Küre VMS Deposit yield a nominal age of upper Toarcian (uppermost early Jurassic) for this well-known Cyprus-type massive sulfide mineralization located in the Central Pontides in northern Turkey. The studies are conducted on handpicked pyrite concentrates obtained from the crushed sulfide ore fractions to minimize effects of regional metamorphism on the mineralization. No geological age could be determined from the Re-Os data for all six samples using a traditional plot of $^{187}\text{Re}/^{188}\text{Os}$ vs. $^{187}\text{Os}/^{188}\text{Os}$. However, four of the six sulfide samples displayed a positive correlation between $^{187}\text{Re}/^{188}\text{Os}$ vs. $^{187}\text{Os}/^{188}\text{Os}$ and yielded an age of 176 ± 22 Ma. The Re-Os
isocheon age is also determined in \(^{187}\text{Re}-^{187}\text{Os}\) (radiogenic \(^{187}\text{Os}\)) space and yield the same age, with uncertainty, as the traditional Re-Os plot (175 ± 19 Ma). Thus, the upper Toarcian age is considered to present the timing of the main sulfide deposition. Two largely different model ages in two of sulfide samples (320.8 ± 37.4 and 138.2 ± 7.2 Ma) are attributed to some other pyrite crystallization events prior to and postdating the main sulfide deposition. Some lower homogenization temperatures from the quartz of the stockwork (<200°C, n=4) may also be correlated to the post-VMS events. The upper Toarcian depositional age of the Küre VMS deposit implies that the ongoing submarine volcanic extrusion episode in the Küre basin has presumably entered a stagnation stage during upper Toarcian allowing the hydrothermal circulation and discharge of the sulfide-laden fluids to the ocean floor. Hence, the data also support the paleotectonic models that interpret the Küre Ocenic Basin as a Permian-early Jurassic back-arc basin of a northward subducting Devonian to Triassic Karakaya Ocean.

The lack of common Os from the sulfides does not let us to infer a source of Os from this data. Still, the limited Re-Os isotopic knowledge obtained from the black-shale strata blanketing the mineralization provides us an idea on the initial \(^{187}\text{Os}/^{188}\text{Os}\) ratio of contemporaneous sea water (0.45-0.46 for 180 Ma). A further detailed study focusing on the isotopic composition of the black shale strata may help to constrain the Os isotopic composition of the contemporaneous seawater and the source(s) of Os in the depositional environment of the Küre VMS deposit.

Acknowledgements

The authors would like to thank Eti Bakır Joint-Stock Corporation and company officials Dr. Yılmaz Altun, Hüseyin Yılmaz, İlyas Şiner and Fatih Yazar for their assistance during the field and sampling studies. The authors are also grateful to the anonymous reviewer and Dr. Stephen J. Piercey for their constructive comments on the earlier version of
the manuscript. This study is funded by the Dokuz Eylül University Scientific Research Project 2012.KB.FEN. 048.

References

Turkish Petroleum Corporation, Exploration Group, Report no. 2965, Ankara

(unpublished).

Geological Journal 41, 123-143.

Hannington, M.D., Galley, A.G., Herzig, P.M., Petersen, S., 1998. COMparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits, in: Herzig,
P.M., Humphris, S.E., Miller, D.J., Zierenberg, R.A. (Eds.), Proceedings of the Ocean Drilling Program Scientific Results Volume 158. Integrated Ocean Drilling Program, College Station TX USA, pp. 389-415.

Ustaömer, T., Robertson, A.H.F., 1999. Geochemical evidence used to test alternative plate tectonic models for pre-Upper Jurassic (Palaeotethyan) units in the Central Pontides, N Turkey, Geological Journal 34, 25-23.

Figure Captions

Figure 2. (a) Geological map of the Küre VMS deposit and its surroundings (after Güner, 1980; Pehlivanoğlu, 1985; JICA and MMAJ, 1992; Çakır, 1995 and Çakır et al., 2006). (b) Generalized columnar section of the Küre ophiolite (modified after Ustaömer and Robertson, 1994).

Figure 3. (a) and (b) shows a general view of the Bakibaba Open-pit during the field studies in 2012, (b) and (c) steeply inclined contact of the Black shale-subgraywacke unit (Bs-Sg) and the pillow lavas (Pl). (d) Pillow lava outcrop from the Bakibaba Open-pit. (e) Black shale-subgraywacke on bench face from the Bakibaba Open-pit. (f) Close-up view of the vertical segment of the black shale-subgraywacke - pillow lava contact.

Figure 4. Photomicrographs of the (a and b) fresh (unaltered) and (c, d, e, f) altered (heavily chloritized) basaltic pillow lavas. Note the overprinting quartz and calcite stockwork veinlets in (c, d, e and f). Cpx: clinopyroxene, Plg: plagioclase, Chl: chlorite, Qz: quartz, Ca: calcite. Op: opaque phases. Photomicrographs (a, b, e and f) are in (+), (c, d) are in (///) nicols.

Figure 5. A schematic summary of the sample depths, types, and lithologies. N-S oriented cross-section of the Mağaradoruk mineralization is from Altun et al. (2015).
Figure 6. Reflected-light images of the ore minerals from massive and stockwork ores of sulfide mineralization. (a) Magnetite (Mgt) replaced by hematite (Hm). (b) Flaky and needle-like and/or acicular hematite (Hm) in euhedral pyrite and the quartz veinlet in the stockwork ore. (c) Subhedral/anhedral pyrite (Py) accumulations embedded in chalcopyrite-I (CcpI). (d) Subhedral/anhedral pyrite (Py) accumulations embedded in manly sphalerite-I (SphI) that include exsolutions/inclusions and/or rhythmic bandings of chalcopyrite-II (CcpII) and chalcopyrite-I (CcpI). (e) Subhedral pyrite (Py) replaced by chalcopyrite-I (CcpI), that is further replaced by sphalerite-I (SphI) and chalcopyrite-II (CcpII). (f) Chalcopyrite-I (CcpI) and bornite (Bo) inter-growths replacing pyrite (Py) and being replaced by sphalerite-II (SphII). (g) Chalcopyrite exsolution lamellae (CcpII) in bornite (Bo). (h) Euhedral/subhedral cobaltite (Co)-pyrite (Py) intergrowths, being replaced by chalcopyrite-I (CcpI). Note the bravosite (Brv) zoning in pyrite (Py). All photomicrographs are in (//) nicols. Images (a), (g) and (h) are in oil immersion.

Figure 7. Reflected-light images of the ore minerals from massive sulfide mineralization. (a) Cobaltite (Co)-pyrite (Py) intergrowths is being replaced by chalcopyrite-I (CcpI) that is further replaced by melnicovite pyrite (Mel-Py). (b) Pyrite (Py) being replaced by chalcopyrite-I (CcpI) and sphalerite-I (SphI). Chalcopyrite is further replaced by melnicovite pyrite (Mel-Py) and marcasite (Mrc). (c) Replacement of melnicovite pyrite (Mel-Py) by marcasite (Mrc). Marcasite is followed by sphalerite-I (SphI) that include chalcopyrite-II (CcpII) exsolution lamella. (d) Native gold (Au) at the boundary of pyrite (Py) and chalcopyrite-I (CcpI). (e) and (f) Native gold (Au) as minute inclusions in pyrite. All images are in (//) nicols. Images (c) and (d) are in oil immersion.

Figure 8. Zn/Cd distributions of sphalerites from Küre VMS Deposit (*) with the data from different ore-forming systems and source rocks. Reference data are: (1) Xu, 1998; (2) Jonasson and Sangster, 1978; (3) Xuexin, 1984; (4) Brill, 1989; (5) Zaw and Large, 1996; (6)

Figure 9. Photomicrographs of the veinlets and the hosted fluid inclusions in the stockwork zone of the Küre massive sulfide mineralization. (a) to (d) show early and late stage quartz veinlets (Qz1 and Qz2, respectively) and (1a) and (1b) represents early and late stage in the (Qz1). (e), (f) and (g) show samples of two phase fluid inclusions from the quartz veinlets of the stockwork ore, (L and V denotes liquid and vapor phases respectively).

Figure 10. A diagram-histogram composite of homogenization temperatures (T_h) and the fluid salinities obtained by the microthermometric measurements from the quartz of the stockwork ore of the Küre VMS deposit.

Figure 11. (a) 187Re-188Os vs. 187Os-188Os plot for all of the six Küre VMS pyrite concentrates. (b) 187Re-188Os vs. 187Os-188Os isochron for four of the pyrite concentrates. (c) 187Re-187Os' isochron for the same set of pyrite concentrates. (d) Weighted average of the model ages plotted for the Küre VMS deposit samples. The data-point error ellipses in (a), (b) and (c), and the box heights in (d) donate 2SE.

Figure 12. (a) Tectonic map of northern Anatolia showing the distribution of the Late Triassic-Early Jurassic Paleo-Tethyan accretionary complex and ophiolite (Karakaya-Küre) (from Okay and Göncüoğlu, 2004). Light grey shaded region shows the Pontides. CP: Central Pontides, EP: Eastern Pontides, IAES: İzmir-Ankara-Erzincan Suture, IPS: Intra-Pontide Suture. (b) Schematic cartoon depicting the western Tethyan realm during Early Norian (from Stampfli et al., 2002). (Bd) Beydağları; (Is) Istanbul; (Kk) Karakaya forearc; (KS) Kotel-Stranja rift; (Mn) Menderes; (Pl) Pelagonian; (Rh) Rhodope; (Sc) Scythian platform; (Sk)
Sakarya; (TD) Trans-Danubian. (c) Summary of the Geological history of the volcano-sedimentary associations of Küre Complex and the Küre VMS Deposit. Reference data are from: (1) Kozur et al. (2000); (2) Aydın et al. (1995); (3) Terzioğlu et al. (2000); (4) Ustaömer and Robertson (1995); (5) Alişan et al. (1992); (6) Çakır (1995); (*)This study.

Table Captions

Table 1. Selected compositional (EPMA) data from some of the main ore phases (pyrite, chalcopyrite, sphalerite) in the Küre VMS deposit.

Table 2. Microthermometric measurements from the quartz of the stockwork ore of the Küre VMS deposit.

Table 3. The Re and Os concentrations and isotope compositions of the six separated pyrite-rich concentrates and two black shale samples.
Kuroko-Type VMS Deposits
Cyprus-Type VMS Deposits
Metamorphosed VMS Deposits
Porphy Deposits

Submarine Volcanic Rocks
Acidic to Intermediate Intrusives (Mainly Tertiary)
Kuroko-Type VMS Deposits
Cyprus-Type VMS Deposits

Fig. 1b

Submarine Volcanic Rocks
Upper Cretaceous Eocene
Upper Cretaceous
Jurassic-Cretaceous

Ophiolites and Ophiolitic Mélanges
Mainly Jurassic-Cretaceous
Metamorphosed VMS Deposits

Country Border

Fault
Thrust Fault
Settling

U.Cretaceous-Tertiary Deposits
Çağlayan Fm.- Shale, marl, silty marl, calciturbidite, turbiditic sandstone and olistostromes
Kayaboğazı M.- Conglomerate
Dikmendağ M.- Andesitic Volcanics

Inaltı Fm. - Shallow water Platform Carbonates
Bürnük Fm. - Red conglomerates-sandstone

Dirgine
Granuloids

Akgöl Gr.-Siliciclastic Rocks-Deep water turbidites
İşniler M. Basalts

Karadağtepe M. - Siliciclastic turbidites with olistostromes
Bekiri Gr.- Low-grade Metamorphic Rocks

Surçaklı M.- Deformed Shallow-water Platform Carbonates
Elekdağ Ophiolites- Serpentinized Peridotite, layered cumulate gabbros, isotropic microgabbros
Beykoz Fm.- Black Shales and turbidites

Permian-Carboniferous
Triassic
Jurassic
Cretaceous
Tertiary
CENOZOIC
MESOZOIC
PALEOZOIC

Fault
Thrust Fault
Settling
Intrusive Lherzolite
Harzburgite-Dunite
Gabbro-Diorite
Conglomerate
Limestone
Diabase dyke
Bakibaba H.
Karacakaya H.
Kızılsu
Mağaradoruk
Dacite
Black Shale-subgraywacke
Basalt
Normal and Strike slip fault
Thrust fault
Cross-section line
Mine sites

LEGEND
Limestone
Conglomerate
Dacite
Black Shale-subgraywacke
Gabbro-Diorite
Intrusive Lherzolite
Harzburgite-Dunite
Diabase dyke
Normal and Strike slip fault
Thrust fault
Cross-section line
Mine sites

Not To Scale

Figure 2
Click here to download Figure: Figure 2.pdf
<table>
<thead>
<tr>
<th>Category</th>
<th>Zn/Cd Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Küre VMS Deposit Turkey (*)</td>
<td>100-1400</td>
</tr>
<tr>
<td>Volcanosedimentary Associations (1/2/3/4)</td>
<td></td>
</tr>
<tr>
<td>Volcanogenic Massive Sulfides (1/5/6/15)</td>
<td></td>
</tr>
<tr>
<td>Modern VMS Analogues (6/7/8/9/10/11)</td>
<td></td>
</tr>
<tr>
<td>Basalts (6/10/12/13/14)</td>
<td></td>
</tr>
<tr>
<td>Skarn Systems w/Basaltic metal source (6)</td>
<td></td>
</tr>
<tr>
<td>Magmatic Hydrothermal Systems (1/3)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8

Click here to download Figure: Figure 8.pdf
Figure 11

(a) Plot of $^{187}\text{Re}/^{188}\text{Os}$ vs. $^{187}\text{Os}/^{188}\text{Os}$ for different samples, showing a trend line for BK-US and M256/V1.

(b) Plot of $^{187}\text{Re}/^{188}\text{Os}$ for KGT-5 and KGT-3, with the age calculated as 176 ± 22 Ma and initial $^{187}\text{Os}/^{188}\text{Os}$ ratio as -6 ± 37.

(c) Plot of ^{187}Os vs. ^{187}Re, with an age of 175 ± 19 Ma and initial ^{187}Os (ppt) as 2 ± 68.

(d) Bar graph showing model ages, with a mean of 176 ± 11 Ma and MSWD = 0.16, probability = 0.92.

Click here to download Figure: Figure 11.pdf
Early Norian (~216 Ma)

Siliciclastic Sediment Deposition

Submarine Volcanism

Küre Deposit

Nominal age of mineralization: 176 ± 11 Ma

Central Anatolian Crystalline Complex

Late Triassic-Early Jurassic Paleo-Tethyan accretionary complex and ophiolite (Karakaya-Küre)
<table>
<thead>
<tr>
<th>Element</th>
<th>Pyrite</th>
<th>9-2</th>
<th>9-10</th>
<th>9-12</th>
<th>9-4</th>
<th>5B-10</th>
<th>6BA-14</th>
<th>Chalcopyrite</th>
<th>9-14</th>
<th>9-7</th>
<th>9-6</th>
<th>4A-20</th>
<th>5B-6</th>
<th>5B-12</th>
<th>Sphalerite</th>
<th>9-5</th>
<th>5B-19</th>
<th>5B-20</th>
<th>5B-21</th>
<th>5B-22</th>
<th>L.O.D. *</th>
<th>wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>53.72</td>
<td>53.66</td>
<td>52.92</td>
<td>53.33</td>
<td>53.23</td>
<td>52.93</td>
<td></td>
<td>34.87</td>
<td>34.97</td>
<td>34.96</td>
<td>35.25</td>
<td>34.65</td>
<td>35.68</td>
<td></td>
<td>33.28</td>
<td>33.17</td>
<td>32.87</td>
<td>32.98</td>
<td>33.18</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>45.20</td>
<td>46.97</td>
<td>45.62</td>
<td>46.39</td>
<td>46.47</td>
<td>46.62</td>
<td></td>
<td>29.95</td>
<td>29.85</td>
<td>30.21</td>
<td>31.00</td>
<td>30.23</td>
<td>31.31</td>
<td></td>
<td>5.55</td>
<td>3.80</td>
<td>2.41</td>
<td>2.58</td>
<td>2.70</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td>0.04</td>
<td>0.11</td>
<td>0.00</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.08</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>56.66</td>
<td>59.51</td>
<td>62.45</td>
<td>61.41</td>
<td>62.06</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td>0.05</td>
<td>0.00</td>
<td>0.18</td>
<td>0.17</td>
<td>0.07</td>
<td>0.42</td>
<td></td>
<td>33.99</td>
<td>33.75</td>
<td>33.88</td>
<td>33.82</td>
<td>33.88</td>
<td>31.38</td>
<td></td>
<td>3.77</td>
<td>1.31</td>
<td>1.34</td>
<td>1.56</td>
<td>1.16</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.14</td>
<td>0.57</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td></td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.13</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.04</td>
<td>0.16</td>
<td>0.10</td>
<td>0.11</td>
<td>0.15</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td>1.39</td>
<td>0.00</td>
<td>0.64</td>
<td>0.69</td>
<td>0.45</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.05</td>
<td>0.09</td>
<td></td>
<td>0.13</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.05</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.11</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.04</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Bi</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.52</td>
<td>100.84</td>
<td>99.58</td>
<td>101.57</td>
<td>100.50</td>
<td>100.15</td>
<td></td>
<td>99.00</td>
<td>98.69</td>
<td>99.28</td>
<td>100.12</td>
<td>98.88</td>
<td>98.47</td>
<td></td>
<td>99.53</td>
<td>98.09</td>
<td>99.26</td>
<td>98.77</td>
<td>99.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn/Cd</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1417</td>
<td>372</td>
<td>625</td>
<td>558</td>
<td>414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L.O.D. *: Averages of the limits of detection for all samples calculated by 3-sigma (3σ) approach.
Table 2

<table>
<thead>
<tr>
<th>No</th>
<th>(T_{\text{m(ice)}}) (°C)</th>
<th>(T_{\text{fm}}) (°C)</th>
<th>(T_{\text{h}}) (°C)</th>
<th>Salinity (wt % NaCl)</th>
<th>Inclusion area ((\mu m^2))</th>
<th>Vapor area ((\mu m^2))</th>
<th>Vapor/Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.0</td>
<td>-50.0</td>
<td>317.0</td>
<td>5.0</td>
<td>636.0</td>
<td>118.0</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>-2.0</td>
<td>-43.0</td>
<td>270.9</td>
<td>3.4</td>
<td>608.0</td>
<td>115.0</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>-3.0</td>
<td>-59.0</td>
<td>209.0</td>
<td>5.0</td>
<td>1496.0</td>
<td>253.7</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>-1.0</td>
<td>-53.0</td>
<td>309.0</td>
<td>1.7</td>
<td>1543.0</td>
<td>203.0</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>292.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>315.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-1.3</td>
<td>-36.0</td>
<td>284.5</td>
<td>2.2</td>
<td>2182.0</td>
<td>613.0</td>
<td>0.28</td>
</tr>
<tr>
<td>8</td>
<td>-0.9</td>
<td>-53.2</td>
<td>298.4</td>
<td>1.6</td>
<td>2200.0</td>
<td>610.0</td>
<td>0.28</td>
</tr>
<tr>
<td>9</td>
<td>-0.9</td>
<td>-55.5</td>
<td>317.5</td>
<td>1.6</td>
<td>782.0</td>
<td>145.0</td>
<td>0.19</td>
</tr>
<tr>
<td>10</td>
<td>-0.5</td>
<td>-54.0</td>
<td>305.7</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>273.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-1.1</td>
<td>-30.0</td>
<td>285.8</td>
<td>1.9</td>
<td>1073.0</td>
<td>218.0</td>
<td>0.20</td>
</tr>
</tbody>
</table>

| Mean | -1.5 | -48.2 | 289.9 | 2.6 | 1315.0 | 284.5 | 0.20 |
| Median | -1.1 | -53.0 | 295.2 | 1.9 | 1284.5 | 210.5 | 0.19 |

Fluid inclusions population 2

<table>
<thead>
<tr>
<th>No</th>
<th>(T_{\text{m(ice)}}) (°C)</th>
<th>(T_{\text{fm}}) (°C)</th>
<th>(T_{\text{h}}) (°C)</th>
<th>Salinity (wt % NaCl)</th>
<th>Inclusion area ((\mu m^2))</th>
<th>Vapor area ((\mu m^2))</th>
<th>Vapor/Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.4</td>
<td>-43.0</td>
<td>224.0</td>
<td>4.0</td>
<td>608.0</td>
<td>81.0</td>
<td>0.13</td>
</tr>
<tr>
<td>2</td>
<td>-1.2</td>
<td>-44.0</td>
<td>161.5</td>
<td>2.1</td>
<td>1763.0</td>
<td>74.0</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>245.7</td>
<td>-</td>
<td>3763.0</td>
<td>139.0</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>245.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>209.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-1.7</td>
<td>-34.0</td>
<td>212.4</td>
<td>2.9</td>
<td>1191.0</td>
<td>172.0</td>
<td>0.14</td>
</tr>
<tr>
<td>7</td>
<td>-1.3</td>
<td>-33.9</td>
<td>187.2</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-1.7</td>
<td>-33.9</td>
<td>169.7</td>
<td>2.9</td>
<td>3974.0</td>
<td>431.0</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>-1.7</td>
<td>-31.0</td>
<td>168.0</td>
<td>2.9</td>
<td>1202.0</td>
<td>105.0</td>
<td>0.09</td>
</tr>
</tbody>
</table>

| Mean | -1.7 | -37.2 | 202.6 | 2.8 | 2083.5 | 167.0 | 0.09 |
| Median | -1.7 | -34.0 | 209.5 | 2.9 | 1482.5 | 122.0 | 0.10 |

\(T_{\text{h}}\): homogenization temperature; \(T_{\text{fm}}\): initial/first melting temperature; \(T_{\text{m(ice)}}\): final ice melting temperature.
Table 3

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Lithology/ Sample Type</th>
<th>Re ± Re 187 Re/ 188 Os ± Os 187 Os/r ± 187 Os r/ 188 Os ± 187 Re/ 188 Os ± 187 Os r/ 188 Os ± rho model age ± Initial 187 Os/ 188 Os @ 180 Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>M256/M1</td>
<td>massive ore/ drill core</td>
<td>336.2 ± 185 598.5 272.0 211.3 0.8 595.0 86.4 102.4 14.9 99.2 907119.9 30014.6 249.4 82.5 1.000 168.8 24.5 -</td>
</tr>
<tr>
<td>M256/V1</td>
<td>stockwork ore/ drill core</td>
<td>188.2 ± 185 273.3 810.3 118.3 0.4 272.7 14.2 100.8 5.3 - 329370.4 697380.1 753.2 1594.8 1.000 138.2 7.2 -</td>
</tr>
<tr>
<td>BK-US</td>
<td>disseminated ore/ outcrop</td>
<td>225.6 ± 185 760.5 1746.4 141.8 0.5 759.8 88.6 100.4 16.4 - 302350.7 492599.8 1614.1 2636.3 0.998 320.8 37.4 -</td>
</tr>
<tr>
<td>KGT-3</td>
<td>massive ore/ drift</td>
<td>132.9 ± 185 250.6 137.2 83.5 0.3 247.8 69.5 104.7 29.4 98.4 44545.1 18248.2 126.1 51.7 1.000 177.8 49.9 -</td>
</tr>
<tr>
<td>KGT-4</td>
<td>massive ore/ drift</td>
<td>147.3 ± 185 286.5 145.1 92.6 0.3 283.4 75.7 104.5 27.9 98.5 45312.2 17134.1 132.7 50.2 1.000 183.4 49.0 -</td>
</tr>
<tr>
<td>KGT-5</td>
<td>massive ore/ drift</td>
<td>630.9 ± 185 1175.2 535.7 396.6 1.4 1171.6 87.2 101.2 7.5 99.6 168744.0 55202.9 492.5 161.1 1.000 177.1 13.2 -</td>
</tr>
<tr>
<td>M256-S2-2</td>
<td>black shale/ drill core</td>
<td>1.15 ± 185 195.5 2.0 - - - - - - - 29.9 6.0 0.5402 0.02 0.677 - - 0.45</td>
</tr>
<tr>
<td>M256-S2-6</td>
<td>black shale/ drill core</td>
<td>0.63 ± 185 157.5 1.6 - - - - - - - 20.1 0.5 0.5171 0.01 0.633 - - 0.46</td>
</tr>
</tbody>
</table>

All ore samples are pyrite-rich sulfide concentrates. (*): Calculated with an initial of 2±68 as derived from the isochron.