Durham Research Online

Deposited in DRO:
26 January 2016

Version of attached file:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:
http://dx.doi.org/10.1109/IRMMW-THz.2015.7327458

Publisher’s copyright statement:
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source
• a link is made to the metadata record in DRO
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
3D polymer structures with variable permittivity at terahertz frequencies

Jonathan Hammler, Yi Pan, Andrew J. Gallant, and Claudio Balocco
School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom

Abstract—Titanium dioxide (TiO₂) powder has been blended with polydimethylsiloxane (PDMS) to manufacture a composite polymer with variable permittivity. Vector network analyser measurements taken between 0.75–1.1 THz quantify the relationship between TiO₂ concentration and complex permittivity of the resultant material. Complex 3D structures have been produced with a casting process. Applications for the tunable-permittivity polymer include dielectric regions in photonic and plasmonic devices operating at terahertz frequencies as well as single pixel imaging systems.

I. INTRODUCTION

Titanium dioxide (TiO₂) is used as a white colourant in paint, cosmetics, food colouring, etc. due to its large refractive index (n=2.4–2.8) [1] at visible wavelengths. This trait is maintained within the terahertz region of the electromagnetic spectrum. Similarly, polydimethylsiloxane (PDMS) is transparent in both visible and THz regions. This flexible silicone polymer is used to manufacture stamps for soft lithography, where feature sizes on the scale of tens of nanometers can be reproduced from moulds [2]. By mixing powdered TiO₂ into PDMS prior to curing, a composite material with increased permittivity is obtained. An investigation into the parameters determining complex permittivity of the material and its suitability for microfabricated devices has been performed.

II. METHODOLOGY

The ratio of constituent component densities, \(\rho_{\text{TiO}_2} : \rho_{\text{PDMS}} = 4230 : 1030 \) (kg/m³), was used to calculate the mass ratios required to result in total volume fractions of TiO₂ equal to 0%, 10%, 20% and 30%. A batch of PDMS was manufactured by blending the base resin (Dow Corning SYLGARD 184) with the recommended quantity of curing agent (10% of base mass). Quantities of PDMS and TiO₂ powder were then weighed with a sub-milligram precision balance prior to homogenisation. Magnetic stir plates were found to lack the torque required to adequately agitate the viscous resin mixture so mixing was performed by hand for five minutes. Dissolved air bubbles were extracted under hard vacuum before pouring the resin mixtures in to glass and aluminium moulds. Curing occurred slowly at ambient temperature, 21°C, over 48 hours while under vacuum. Optical microscopy showed little indication of inhomogeneity of the sample surfaces.

Measurements were taken in the frequency range 0.75–1.10 THz with a vector network analyser connected to frequency extension transceivers. Planar polymer samples were mounted orthonormal to the free space transmission path of a collimated terahertz beam. The two port network was measured with the VNA after calibration. The complex permittivity of the materials under test was calculated from S-parameter data and geometric thickness with closed-form expressions [3] where the derivative of phase with respect to frequency is used to calculate the real component and the magnitude of transmission is used to find the imaginary component.

III. RESULTS

The linear relationship between volume concentration of TiO₂ and complex permittivity is shown in Figure 1. It has been found that an increased concentration results in an increase in both real and imaginary components of relative permittivity. The dielectric properties of the composite are affected not just by ratio of pigment to binder, but by the quantities of each TiO₂ polymorph (rutile, anatase and brookite) present in the powder; each one having a unique density and permittivity. Experimental results are compared with theoretical values [4] for mixtures of well defined constituent components. Homogeneity of the mixture is examined. Particle sizes of the pigment can range from tens of micrometers, as found in common food additives, down to tens of nanometers when specially prepared. Larger particles, with sizes of similar magnitude to the wavelength of incident terahertz radiation, create
a stronger scattering effect than smaller particles resulting in an increasingly lossy material. All samples which have been prepared to date operate within the Mie scattering regime, with $\alpha \approx 1.3$ found from analysis of scanning electron microscopy (SEM).

Figure 1 (inset) shows a cohesive structure with distinct three dimensional regions of differing permittivity: $\epsilon'_r = 1.89$ in the clear region and $\epsilon'_r = 3.13$ in the white area. The sample was manufactured by casting into a cavity mould. However, spin coating, stamping, screen printing or gravure printing techniques can also be used to produce patterned thin film structures from the polymer.

Manufactured devices can serve as phase shift masks for THz coded aperture imaging as shown in Fig. 2, lenses, or as filters if a photonic band gap is introduced. The polymer can be used as a flexible substrate or bonded to several different surfaces including silicon, glass and aluminium. Metalisation of the polymer surface is also possible, to create dielectric-metal interfaces for plasmonic devices, (partially) reflecting mirrors or electrical contacts.

IV. SUMMARY

A composite polymer with selectable dielectric constant at terahertz frequencies has been presented. The material has been shaped into complex 3D structures with applications in THz imaging systems. Further research will investigate rheological properties of the composite polymer and realising designs for THz lenses and including sensing structures within microfluidic cavities.

REFERENCES