A concept map for understanding ‘working scientifically’

Philip Johnson and Ros Roberts

School of Education

Durham University

Brief description

What is the ‘thinking behind the doing’ of ‘Working scientifically’? A concept map showing the interrelated ideas and how they impact on the difficulty of an investigation are shown.

Abstract

The generation and critical evaluation of good quality data requires the understanding of ideas rather than practicing set procedures. ‘Working scientifically’ does not explicitly specify these ideas. To highlight that thinking is necessary this article presents and discusses a concept map which sets out the key ideas about the quality of data and their inter-relationships and suggests factors to consider when teaching students so they can develop this understanding.

Key words

Working scientifically; understanding data; investigations.

Introduction

The inception of a National Curriculum for science entailed a ground-breaking attempt to specify the practice of science alongside the usual substantive content of biology, chemistry and physics. Although with some differences in emphasis, a separate section concerned with the ‘doing’ of science has
remained a fixture in all subsequent versions of the National Curriculum. However, its introduction was not unproblematic (Jenkins, 1995) and issues have persisted (Abrahams & Reiss, 2012). There has been concern about how to teach and assess the ‘doing’ of science. The new National Curriculum for England (DfE 2014) presents the latest incarnation ‘working scientifically’ separately, but insists it should be taught “through the content across all three disciplines” the challenge of which was highlighted in Roberts and Reading (2015).

In this article we seek to emphasise the importance of recognising the understanding underpinning ‘working scientifically’ by presenting a concept map (Cañas, Novak & Reiska, 2015). ‘Working scientifically’ makes reference to the English context, but our interest is in the ‘doing’ of science irrespective of particular curricular labelling and as such we believe this article has wider relevance. Our map focuses on the validity of data generated in carrying out scientific investigations. Although not the whole of ‘working scientifically’, the quality of empirical data is a central component where the ideas provide the foundation for understanding other aspects of scientific practice. Space does not allow elaboration upon these contingencies.

First we explain the distinction between a procedural description of scientific practice and its underpinning ideas, before discussing the concept map in detail. This also highlights the crucial interrelationship between investigation and substantive understanding. We go on to suggest the National Curriculum could be more explicit in recognising the ‘thinking behind the doing’ that needs to be taught and that this omission is limiting our students’ ability to achieve their full potential to carry out investigations. Finally, we show how the conceptual framework can inform the planning for progression in teaching scientific investigations through substantive science content.
Description versus ideas

Observing scientists at work, one sees activities such as planning experiments, taking measurements with instruments, recording data, presenting results and drawing conclusions. Closer examination would note points like selecting a particular measuring instrument from a range available, repeating the taking of readings and choosing between ways of representing results. Listing such activities compiles a description of working scientifically.

However, going beyond superficial imitation, to be a scientist one needs to understand the thinking behind the activities. For example, on repeats, the key issue is not so much the process of repeating readings, but the decision about how many to make. Here the number depends on the particular circumstances – there is no set figure. Essentially, the thinking behind deciding on a number of repeats involves an assessment of the variation in the repeated readings of the dependent variable in relation to the effect of changing the independent variable.

Take the question ‘which ball has the highest bounce?’ For a squash vs a tennis ball, the difference between the two balls will be much greater than the variation amongst each ball’s repeated readings – however the height is measured – and only a few repeats (if any) will be needed to come up with convincing data to support a claim for one ball over the other. However, for two different tennis balls the variation in repeated readings of their bounce is likely to be similar to any difference between balls and a larger number of repeats will be needed to establish if one is a better bouncer than the other. By appreciating what contributes to the variation the experimenter may well be able to find ways of reducing it and so decrease the number of repeats required – use a video camera rather than the naked eye to judge the highest point, perhaps.

Understanding working scientifically requires ideas (concepts) about the quality of data (Millar et al, 1994; Gott et al, 2003).
A concept map for scientific investigation.

Figure 1 (based on Roberts & Johnson, 2015) relates to investigations with a continuous dependent variable and centralises the question of the validity of the data since the degree of confidence in the validity gives its weight as evidence for a claim. Broadly speaking, Figure 1 has two inter-related sides. On the left is thinking about variables and on the right thinking about measurement. The relationships between these ideas are the basis for decision-making (‘the thinking behind the doing’). We expand on this below.

Variables

Defining variables

Defined Variables and are the creation of substantive science - they make up the subjects biology, chemistry and physics. (Concepts on the map that are intimately informed by substantive knowledge are shown with a shadow in figure 1.) Definitions can range from relatively simple such as a particular kind of object/thing (e.g., a ball), or quantities such as length, mass and time, to more involved such as energy, a living species or a substance, to very complex such as the temperature of the Earth. (NB, simple does not necessarily mean easy to understand!) Where the variable is a kind of object/thing a representative sample may be required - a concept perhaps more familiar to biologists, but just as relevant to samples in other science subjects. If our earlier question about balls had been ‘which type of ball has the highest bounce?’ we would want to know how representative our balls were of their type (each from a particular brand). This would involve testing more than one of each type. However, since we expect such objects to be manufactured within close tolerance limits we would anticipate minimal variation within type. For squash vs tennis balls we might be satisfied with testing very few. If comparing
two brands of tennis ball, where any difference might be similar to the variation amongst specimens of the same brand, a larger sample of each type would be in order. In the case of living things, sizeable variation is to be expected. An investigation to establish the effect of different fertilizers on the yield of tomatoes will need more than a few tomato plants. As with the number of repeats for the bouncing ball experiment, deciding on a sufficient sample size of tomato plants depends on the variation amongst plants in comparison to the size of the effect – the difference in average yield between treatment with different fertilizers and none in this case.

Relationships between variables

Variables may have a relationship with each other. The decision to look for a possible relationship can arise from a hunch based on experience or, more usually, be informed by the substantive theories of science (even wild hunches have some tenuous theoretical basis). Investigating a relationship leads to the assignment of one variable as the independent variable (IV) and one variable as the dependent variable (DV). For a continuous IV decisions about the range and interval of their values have to be made.

The range is crucial in capturing the full picture. Consider an investigation into the relationship between the time it takes for granulated sugar to dissolve and the volume of water, using basic equipment. (One we have given to non-science specialist undergraduate Primary Education students and PGCE science specialists with the following very similar, consistent results.) At volumes producing mid to low concentrations for the amount of sugar used, time differences are typically much smaller than the variation between repeated readings. Only towards high concentrations does a detectable lengthening of time occur. Of course, substantive theory can inform the thinking. For dissolving sugar, the notion of a saturated solution would suggest a low enough volume of water where the time would be infinite. Even so, trial runs will be needed to establish a suitable range in the circumstances. Interval can also be important, especially where closer readings are helpful in picking up any maximum,
minimum or inflection points in a relationship. Again, substantive thinking can lead to the anticipation of such eventualities. The idea of range can also apply to a categoric independent variable; for example, in a question about soil type and plant distribution we would need to decide how many different soils to test for.

Control

Any relationship will have confounding variables – those variables which also affect the dependent variable. Confounding variables need controlling in some way to isolate any relationship between the chosen IV and DV. The identification of confounding variables draws directly on substantive knowledge and is limited by that knowledge. There has to be a reason for deciding a particular variable should be controlled, if only because it might be relevant, to be safe.

There are different ways of addressing the control of confounding variables. Where a variable can be directly manipulated it is usual to fix it at a certain value. For our bouncing ball experiments, the height of drop and landing surface are critical confounding variables to be fixed. For our dissolving sugar experiment amount of sugar, rate of stirring and temperature may be identified for control. It is important to appreciate that the fixed values have impact on the magnitude of the DV and need to be chosen appropriately. So, releasing our balls at a height of the order of a metre would be better than around 10 cm in order to produce a more measurable bounce. For the dissolving experiment, an amount of sugar around 10 g will be better than 0.1 g. Our definition of manipulation also includes situations where the value of a variable changes in the same way for each test. For the tomato investigation, we can ensure the fluctuation in light intensity is the same for all plants.

In some contexts, particularly non lab-based ‘field’ experiments, the ‘control’ is through matching. One way is by selection. For example in a field survey of the potential relationship between a soil’s nitrate concentration and plant biomass, confounding variables such as the degree and direction of slope cannot be directly manipulated. Instead, sites with a similar ‘aspect’ (and other relevant
characteristics) would be chosen for comparison. This could either be in the planning stage of an investigation (pre-) or post-hoc after data have been collected across a host of environmental variables. Social science and medical studies will select groups through a screening process on confounding variables. If a 'male middle class smoker and drinker' is put in the treatment group, then a 'matched' 'male middle class smoker and drinker' is also put in the comparison (control) group. Of course, what counts as ‘male’, ‘middle class’, ‘smoker’ and ‘drinker’ will need to be defined. If sample groups are large enough one can move into the territory of a randomised controlled trial (RCT). Subjects are assigned to treatment groups by a random process. With a large enough sample size it can be assumed the multifarious confounding variables will even out so the only difference overall is the treatment applied to one group and not the other.

Measurement

Instruments

Variables have values which require measurement by an instrument of some kind. Essentially, we are concerned with continuous variables although values of categoric variables do need to be recognised; e.g. what is a ‘squash’ ball or a particular ‘type’ of fertilizer.

The most important and general idea to appreciate about measurement is that it is not unproblematic. Any measurement must be held to be fallible to some degree. Sometimes this is referred to as ‘reliability’, but since there is much ambiguity surrounding this everyday term we avoid it, following guidance in The Language of Measurement (Boohan et al, 2010). There are three main considerations with respect to fallibility: the degree of uncertainty associated with using an instrument, the accuracy of the instrument and the repeatability of the event giving rise to a measurement of the DV.
All measuring instruments have a built-in degree of uncertainty. Foremost, arguably, when measuring continuous values is the resolution of the scale. In the case of a ruler marked out in mm intervals, it is possible to read to the nearest 0.5 mm with high confidence. For a digital balance giving a read-out to the nearest 0.1 g, in wishing to weigh out 5.0 g we can only be sure we have an amount somewhere between 4.95 g and 5.05 g. High level work would need to take the detailed specification of an instrument into account. For example, a thermometer has an error associated with the consistency of the bore’s cross-sectional area and a certain depth of immersion is stipulated. As the complexity of the internal workings of an instrument increases so too do the possible contributions to uncertainty.

Our definition of instrument also includes the totality of how it is used to measure a particular variable. In the case of measuring ‘the height of bounce’ one instrument would be ‘a metre rule and sighting by eye’ and another would be ‘a metre rule and recording by video’. The former would have a greater degree of uncertainty associated with judging the highest point. In field studies the use of quadrats to measure a population is an instrument that will have a degree of uncertainty according to use; counts, percentage cover and abundance scales all having inherent uncertainties, for instance.

An instrument can only measure a continuous variable to a region (not a point) and its accuracy relates to how close that region is to the true value. For an accurate measurement, we would expect the true value to lie within the region. A systematic error can arise if the scale is not calibrated correctly. In all of the above, we assume an instrument measures what it purports to measure. Otherwise, the instrument would be completely inaccurate! In this respect, the design of an instrument is dependent on substantive theory.

Variation in repeated measurements of the DV

As we have seen with height of ball bounce and time for sugar to dissolve, there can be variation amongst repeated takes of a DV for a particular value of the IV (the repeatability of the event). The uncertainty associated with measuring the fixed value of each identified confounding variable, and the
IV if continuous, will contribute to this variation. In setting up for each take, the starting conditions will only be the same within limits – not exactly the same each time. The repeatability of the event. will also depend on the extent to which all other confounding variables have been identified and controlled. For our ball investigation, release of the ball by hand may impart varying impetus on occasions. A neutral release mechanism would help (and also reduce uncertainty in replicating release height). Non-uniformity in the ball fabric and landing surface may contribute to variation when particular spots meet. This is something that would be difficult to control and probably not desirable for the findings to have relevance to real life. With the sugar investigation, in focusing on using the same amount of sugar we may have overlooked grain size as a confounding variable (in our experience, students do, even with sieves available). Since the grains dissolve simultaneously we are actually timing for the biggest grain to dissolve (at the concentration produced by the overall amount of sugar). Pre-sieving to remove the largest pieces would ensure a more consistent maximum size and reduce the variation.

Assessing the reliability of the measurement of the DV requires repeated measurements. As discussed earlier, the number of repeats is a matter of judgment in the circumstances. Increasing the number of repeats narrows down the region where we can say the true value lies. Statistically speaking, increasing the number of repeats (n) reduces the standard deviation of the mean, otherwise known as standard error (SE = SD/√n). We can be 68% sure that the true value lies in the region between one standard error either side of the mean value. Extending the region to two standard errors either side of the mean gives a 95% probability of covering the location of the true value. To reduce standard error one should first think about ways of reducing the variation - better instruments, any unidentified confounding variables, or even re-defining the variable so the sample is more homogeneous. Failing that, increase the number of repeats.
Human error

We have noted the constraints of our sense organs when incorporated into an instrument (e.g. judging highest point of bounce), but have not included ‘human error’ in Figure 1. That people can make mistakes is self-evident and hardly needs teaching. That there is an inherent variation in the measurement of a DV, no matter how carefully done, is the crucial point to understand. It can then be appreciated how very tightly manipulated contexts can lead to little variation (or no variation that can be picked up by our instruments). Too much emphasis on ‘anomalous’ readings arising from ‘human error’ carries the danger of offering an easy distraction – slipping to all variation being put down to human error.

Distinctiveness of different sciences

As illustrated with our examples, differences in categoric variables and the control of confounding variables account for the distinctiveness of biology, chemistry and physics investigations. The categoric variables of physics tend to be objects manufactured to tight specifications where a representative sample is not usually at issue. In biology, variation within a kind of living thing is a central concern in selecting a sample. Since the variation in samples is often greater than instrument uncertainty the latter often attracts less attention compared with, say, physics. ‘Substances’ are the characteristic categoric variables of chemistry where there is no variation within a kind (a substance is a substance) but the purity of samples is important. Confounding variables are usually manipulated in physics and chemistry, but are often matched in biology.

There is, of course, much important practical work other than investigations with continuous DVs. Qualitative chemistry has categoric DVs – the new substances and their characteristics. Descriptive work in biology is concerned with defining variables (e.g. what constitutes an individual grass plant).
Validity of data and explanation

All of the ideas in Figure 1 need to be used to assess the validity of the data and whether it demonstrates a relationship. Have all relevant variables been dealt with appropriately and is the measurement good enough? Appreciating when data are inadequate is very important.

Concluding that data do show a relationship is one thing, explaining that relationship is another matter. The relationship may be causal, may be an association due to a common cause or may simply arise by chance. Substantive ideas will be used here to consider the question of causality and the relative merits of competing theories. Whether an observed trend extends beyond the tested range of the independent variable and holds for other values of confounding variables will also be matters of conjecture drawing on substantive knowledge (requiring empirical confirmation if possible and needs be).

The National Curriculum and possible outcomes in the classroom

Autonomous scientific investigation and critical evaluation is contingent on understanding the ideas in Figure 1. However, whilst National Curriculum documents describe ‘working scientifically’, they have been less clear in specifying the ideas to be taught. In willing the ends the means have not necessarily been identified. For example, the new programmes of study at KS3 & 4 both stipulate:

- make and record observations and measurements using a range of methods ... and evaluate the ... methods and suggest possible improvements
- evaluate data ... showing awareness of potential sources of random and systematic error.
But how are students to decide on the quality of the investigation, suggest changes or evaluate without understanding how their data are contingent on the ideas in Figure 1? Nowhere in the curriculum documentation is the *thinking* behind such decisions explicitly addressed. As we have discussed above, the judgment involves an assessment of the interconnected ideas about variables and measurement. When do we teach students all the ideas they need to be able to do this? For instance, deciding on a number of repeats requires trial runs – to get a sense of the variation and the effect of changing the IV. As discussed earlier, if the variation is great we may think of ways to reduce it before proceeding any further. We need to explore an appropriate range for the IV. However, nowhere does the National Curriculum draw attention to the vital role of trial runs in the planning stage of an investigation nor what ideas might be called on to make such decisions. Intuitively, it makes sense that a mean is more trustworthy the greater the number of repeats, but why not teach about standard error to make things more understandable (the idea, not the detailed maths)?

Without attention to such thinking, the danger is that students are taught set routines and their experience is restricted to those contexts (of high repeatability) where the routine applies (Roberts, 2009, Roberts & Reading, 2015).

Planning for progression in scientific investigations

In the first instance, we see our concept map as an aid to lesson planning with respect to identifying the specific ideas being addressed. However, we also see no reason why appropriate concept mapping activities for students could not be devised as well. To plan for progression, one needs to consider what makes an investigation more challenging. Figure 2 identifies important conceptual factors and the direction of increasing difficulty. In our discussion of Figure 1 we saw the dependence on substantive knowledge. Sufficient grasp of the variables involved is necessary to conceiving a possible relationship to
investigate, identifying the confounding variables and anticipating patterns. The more specialised the substantive knowledge the higher this threshold.

‘Which is best’ investigations with categoric IVs are simpler in structure than those with continuous IVs. A highly repeatable DV (such as the length of a spring at a given load) is easier to deal with than a wayward one (such as distance moved by a propelled object). Large changes in the DV and especially in conjunction with high repeatability make for a less demanding decision on the number of repeats (i.e. 3 may well do). Although, on the face of it, a DV might be easy to think of, measuring it can be less than straightforward. For example, how do you measure the stickiness of sticky tape, or the number of leaves on a tree? Situations where confounding variables need to be matched make more demands than those where they can be manipulated. Sampling of objects with high variation within their kind brings an additional consideration.

An investigation which keeps entirely to the left of Figure 2 will be easier than one entirely to the right. Other combinations of the factors will lie somewhere between, but since the relative difficulties of the factors are unknown, overall difficulties cannot be predicted. Further research is needed here. When planning to teach the thinking behind one of the factors, it would be prudent to keep the others to the ‘left’. Our example of the bouncing balls investigation has the advantage of a relatively low substantive demand which allows the ideas about repeatability to be the focus of attention. Of course, the overall difficulty of an investigation activity can be adjusted by the degree of openness: whether students are left to make all decisions or help is given with some. At the extreme of this continuum are specified protocols where all such decisions have already been made.
As well as the conceptual factors in Figure 2 there are also important practical considerations. There is less worry in giving students a free rein when safety concerns are low. If the time it takes to get a reading of the DV is short, then the number of repeats can be decided on the merits of the trial runs without being restricted by the length of the lesson. The demand on manipulative skills may be an issue. Affectively, an investigation with appeal and where the outcome is not entirely predictable is likely to engender high motivation: for example, investigating the relationship between the spins of an egg and the length of boiling time (see Gott, Foulds et al 1999). Strict adherence to the specified substantive content of the National Curriculum may be unhelpful in this regard.

Conclusion

As noted earlier, other aspects of ‘working scientifically’ feed from Figure 1, such as testing reproducibility of measurement and peer review to judge the overall validity. The role of existing substantive knowledge helps the appreciation of why methods and theory develop.

Our concept map has been through many iterations (most recently in response to feedback from reviewers) and we make no claims about its completeness and organisation. The key point is there is a conceptual basis to ‘working scientifically’ just like the substantive knowledge bases of biology, chemistry and physics for which concept maps are commonly drawn. If we want our students to be able carry out scientific investigations, approaching a wide range of novel, authentic contexts with confidence, flexibility and competence we need to teach the ideas. It is not a matter of rehearsing a set of described procedures.
References

Word count after responding to reviewers: ~4420 including refs, excluding figures & abstract
Figure 1. A concept map with the focus question “What is the ‘thinking behind the doing’ for determining the validity of data?” (based on Roberts & Johnson, 2015). [Concepts directly informed by substantive knowledge are highlighted with a shadow on the box.]

[See attached .pdf and .ps]

Figure 2. Conceptual factors affecting the difficulty of an investigation.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Less difficult</th>
<th>More difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialised Substantive knowledge</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Independent variable</td>
<td>Categoric</td>
<td>Continuous.</td>
</tr>
<tr>
<td>Repeatability of DV</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Magnitude of changes in DV</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>for each value of IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement of DV and other variables</td>
<td>Straightforward</td>
<td>Less straightforward</td>
</tr>
<tr>
<td>Control of confounding variables</td>
<td>Manipulated</td>
<td>Matched</td>
</tr>
<tr>
<td>Sampling of ‘objects’</td>
<td>Low variation in kind</td>
<td>High variation in kind</td>
</tr>
</tbody>
</table>
Biographical details

Philip Johnson taught science for 13 years in non-selective secondary schools in England before joining Durham University School of Education in 1992. He retired from the post of Senior Lecturer in Science Education in 2011. He began research into the development of students’ understanding in science whilst teaching in schools and continues to do so.

Ros Roberts is a Senior Lecturer in science education in the School of Education, Durham University, having previously taught in comprehensive schools and FE. Her research interests include the curriculum, teaching and assessment of scientific evidence; the role of practical work and fieldwork; and scientific literacy.