Citation for published item:

Further information on publisher’s website:
http://dx.doi.org/10.1093/mnras/stu2609

Publisher’s copyright statement:
This article has been accepted for publication in Monthly notices of the Royal Astronomical Society ©: 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Additional information:

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Erratum: elemental abundances in Milky Way-like galaxies from a hierarchical galaxy formation model

by Gabriella De Lucia,1⋆ Luca Tornatore,1 Carlos S. Frenk,2 Amina Helmi,3 Julio F. Navarro4 and Simon D. M. White5

1INAF, Astronomical Observatory of Trieste, via G.B. Tiepolo 11, I-34143 Trieste, Italy
2Institute of Computational Cosmology, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, UK
3Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands
4Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
5Max Planck Institut für Astrophysik Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

Key words: errata, addenda – Galaxy: abundances – Galaxy: evolution – Galaxy: formation – galaxies: dwarf.

Our paper ‘Elemental abundances in Milky Way-like galaxies from a hierarchical galaxy formation model’ was published in MNRAS, 445, 970 (2014). Due to a mistake, the code used for the runs included in the paper did not account correctly for the decrease of the galaxy stellar mass, following restitution of gas to the interstellar medium through stellar winds and supernovae explosions. As a consequence, the stellar masses given in the paper were slightly overpredicted. This affects in particular Figs 7 and 9 of our original manuscript. The updated versions of these figures are reproduced here for completeness (see Figs 1 and 2).

For Aq-B-2, the predicted stellar mass of the model Milky Way galaxy is $4.5 \times 10^{10} \, M_{\odot}$ (against $\sim 6 \times 10^{10} \, M_{\odot}$ quoted in our paper), that is still in very good agreement with the estimated value for our own Milky Way. The current level of star formation rate is $\sim 3.6 \, M_{\odot} \, yr^{-1}$ ($\sim 2.8 \, M_{\odot} \, yr^{-1}$ in our paper), and the present value of the SNIa rate is ~ 0.73 (0.58 in our paper) events/century, still higher than a factor of 2 to 3 with respect to the observational estimate of ~ 0.2–0.3 events/century.

All conclusions of our paper are unaffected.

⋆ E-mail: delucia@oats.inaf.it
Figure 1. Physical properties of our model Milky Way galaxies, for the different simulations used in this study. The open circles show results from the model based on the instantaneous recycling approximation, while filled symbols show the corresponding results based on the updated chemical model presented in our paper. The red horizontal lines in each panel indicate observational estimates.

Figure 2. Star formation history for the model Milky Way galaxy in the run Aq-A-3. The solid black line shows the prediction from the reference model used in our study, while the black dashed line shows the corresponding prediction from a run that adopts an instantaneous recycling approximation. The coloured dotted, dot–dashed and long-dashed lines correspond to variations of the latter run with varying parameters.

This paper has been typeset from a TeX/LaTeX file prepared by the author.