Skip to main content

Research Repository

Advanced Search

Work-function measurement by high resolution scanning Kelvin nanoprobe

Cheran, Larisa-Emilia; Johnstone, Sherri; Sadeghi, Saman; Thompson, Michael

Authors

Larisa-Emilia Cheran

Sherri Johnstone

Saman Sadeghi

Michael Thompson



Abstract

Nanoscience promises to transform today's world in the same way that integrated semiconductor devices transformed the world of electronics and computation. In the post-genomic era, the greatest challenge is to make connections between the structures and functions of biomolecules at the nanometre-scale level in order to underpin the understanding of larger scale systems in the fields of human biology and physiology. To achieve this, instruments with new capabilities need to be researched and developed, with particular emphasis on new levels of sensitivity, precision and resolution for biomolecular analysis. This paper describes an instrument able to analyse structures that range from tenths of a nanometre (proteins, DNA) to micron-scale structures (living cells), which can be investigated non-destructively in their normal state and subsequently in chemical- or biochemical-modified conditions. The high-resolution scanning Kelvin nanoprobe (SKN) measures the work-function changes at molecular level, instigated by local charge reconfiguration due to translational motion of mobile charges, dipolar relaxation of bound charges, interfacial polarization and structural and conformational modifications. In addition to detecting surface electrical properties, the instrument offers, in parallel, the surface topographic image, with nanometre resolution. The instrument can also be used to investigate subtle work function/topography variations which occur in, for example, corrosion, contamination, adsorption and desorption of molecules, crystallographic studies, mechanical stress studies, surface photovoltaic studies, material science, biocompatibility studies, microelectronic characterization in semiconductor technology, oxide and thin films, surface processing and treatments, surfaces and interfaces characterization. This paper presents the design and development of the instrument, the basic principles of the method and the challenges involved to achieve nanometric resolution and sub-millivolt sensitivity, for both the topographic imaging of surface micromorphology and surface potential and work-function determination.

Citation

Cheran, L., Johnstone, S., Sadeghi, S., & Thompson, M. (2007). Work-function measurement by high resolution scanning Kelvin nanoprobe. Measurement Science and Technology, 18(3), 567-578. https://doi.org/10.1088/0957-0233/18/3/005

Journal Article Type Article
Publication Date 2007-03
Deposit Date Feb 25, 2008
Journal Measurement Science and Technology
Print ISSN 0957-0233
Electronic ISSN 1361-6501
Publisher IOP Publishing
Peer Reviewed Peer Reviewed
Volume 18
Issue 3
Pages 567-578
DOI https://doi.org/10.1088/0957-0233/18/3/005
Keywords work function, contact potential measurement, guarded probe, high-resolution imaging of surface electrical properties, corrosion, surface interfacial characterization, microelectronic characterization, detection of biomolecular interaction