
Further information on publisher’s website:
http://dx.doi.org/10.1038/ncomms11970

Publisher’s copyright statement:
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Supplementary Figure 1. Location bathymetry map of DSDP Site 593 (this study) in the Tasman Sea, and other localities discussed in the text. Position of important frontal regions is also shown. Antarctic Intermediate Water, that currently bathes Site 593, forms between the two fronts. Map adapted from Elmore et al. (ref. 1).
Supplementary Figure 2. Summary of previously-published Mid Pleistocene nannoplankton records. a, Orbital eccentricity², showing prolonged insolation minima at ~0.8 Ma due to minimum tilt. b, assemblage % small placoliths (which includes small *Gephyrocapsa*, along with other small species) from various sites³⁴⁵. c, % of small *Gephyrocapsa* from Sites 1087 (South Atlantic⁶), MD 97-2114 (SW Pacific⁷) and 1209 (North Pacific⁸). Yellow bar indicates the approximate position of the diachronous global benthic foraminiferal extinction.
Supplementary Figure 3. Nannoplankton and extinct benthic foraminiferal assemblages compared at the same sites. a-b, DSDP Site 593 (this study). c, ODP Site 980 (ref. 9). d, ODP Site 980 (this study). Note how dominance of small Gephyrocapsa within nannoplankton is coincident with low abundance of the benthic foraminifera extinction group in both ocean basins in distal locations.
Supplementary Figure 4. Age model for DSDP593. Plots show the correspondence between δ^{18}O$_{P. wuellerstorfi}$ from DSDP593 (blue; left axis) with the LR0410 benthic foraminiferal δ^{18}O stack (black; right axis). Average analytical reproducibility for δ^{18}O of the calcite standard is < 0.1‰.
Supplementary Figure 5. Scanning electron microscope photographs of selected abundant taxa from the elongate uniserial extinction group. 1. Chrysalogonium deceptorum (593Z, 3H, 2W, 130-132 cm); 2-3. Cribroconica stimulate (593Z, 3H, 4W, 100-102 cm); 4. Chrysalogonium rudis (593Z, 3H, 6W, 40-42 cm); 5. Chrysalogonium rudis
(593Z, 3H, 6W, 40-42 cm); 6. **Orthomorphina perversa** (593Z, 3H, 4W, 100-102 cm); 7. **Orthomorphina perversa** (593Z, 3H, 2W, 130-132 cm); 8. **Mucronina compressa** (593Z, 3H, 2W, 130-132 cm); 9. **Mucronina compressa** (593Z, 3H, 2W, 130-132 cm); 10. **Staffia tostata** (593Z, 3H, 6W, 40-42 cm); 11. **Staffia tostata** (593Z, 3H, 6W, 40-42 cm); 12. **Siphonodosaria pomuligera** (593Z, 3H, 4W, 100-102 cm); 13. **Siphonodosaria pomuligera** (593Z, 3H, 4W, 100-102 cm); 14. **Strictocostella matanzana** (593Z, 3H, 6W, 40-42 cm); 15-16. **Siphonodosaria jacksonensis** (593Z, 3H, 4W, 100-102 cm); 17. **Siphonodosaria lepidula** (593Z, 3H, 2W, 130-132 cm); 18. **Siphonodosaria lepidula** (593Z, 3H, 4W, 100-102 cm); 19. **Siphonodosaria lepidula** (593Z, 3H, 6W, 40-42 cm); 20-21. **Siphonodosaria lepidula** (593Z, 3H, 2W, 130-132 cm); 22. **Stilostomella fisticuca** (593Z, 3H, 4W, 100-102 cm); 23. **Stilostomella parexilis** (593Z, 3H, 6W, 40-42 cm); 24-25. **Strictocostella scharbergana** (593Z, 3H, 4W, 100-102 cm); 26. **Strictocostella scharbergana** (593Z, 3H, 6W, 40-42 cm); 27. **Ellipsoglandulina labiate** (593Z, 3H, 4W, 100-102 cm); 28. **Pleurostomella alternans** (593Z, 3H, 2W, 130-132 cm); 29. **Pleurostomella alternans** (593Z, 3H, 2W, 130-132 cm). Scale bars in μm.

Supplementary Table 1. *Planulina wuellerstorfi* oxygen isotope data between 0.4 and 1.1 Ma for DSDP Site 593.

<table>
<thead>
<tr>
<th>Core Depth (m)</th>
<th>Age (Ma)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>0.31</td>
<td>0.0159</td>
<td>AMS-14C (refs. 11,12)</td>
</tr>
<tr>
<td>0.81</td>
<td>0.088</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>1.80</td>
<td>0.123</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>2.31</td>
<td>0.138</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>3.18</td>
<td>0.186</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>3.86</td>
<td>0.237</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>4.89</td>
<td>0.252</td>
<td>Ref. 1</td>
</tr>
<tr>
<td>5.28</td>
<td>0.295</td>
<td>Ref. 1</td>
</tr>
</tbody>
</table>
5.60 0.332 Ref. 1
5.80 0.341 Ref. 1
7.61 0.370 Ref. 1
8.07 0.421 Ref. 1
9.81 0.491 This study
10.31 0.513 This study
10.51 0.530 This study
11.01 0.584 This study
11.12 0.600 This study
12.00 0.650 This study
12.26 0.695 This study
12.81 0.706 This study
14.90 0.718 This study
15.10 0.735 This study
15.67 0.766 This study
15.88 0.790 This study
16.80 0.809 This study
17.17 0.831 This study
17.70 0.858 This study
18.10 0.874 This study
18.35 0.907 This study
18.56 0.92 This study
19.59 0.954 This study
21.20 0.987 This study
21.50 1.000 Potaka Tephra (This study)
23.50 1.070 Base of Jaramillo (ref. 13)
25.22 1.128 This study

61

62

63 Supplementary References

64 1. Elmore, A.C. et al. Antarctic Intermediate Water properties since 400ka recorded in
infaunal (*Uvigerina peregrina*) and epifaunal (*Planulina wuellerstorfi*) benthic

69 3. Marino, M., Maiorano, P. & Lirer, F. Changes in calcareous nannofossil assemblages
assemblages to paleoenvironmental changes through the mid-Pleistocene revolution at
Site 1090 (Southern Ocean). *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **280**, 333–349
(2009).

5. Marino, M., Maiorano, P. & Flower, B. P. Calcareous nannofossil changes during the
Mid-Pleistocene Revolution: Paleoeologic and paleoceanographic evidence from North

6. McClymont, E. L. *et al.* Alkenone and coccolith records of the mid-Pleistocene in the
south-east Atlantic: Implications for the U137 index and South African climate. *Quat.

7. Mancin, N., Hayward, B. W., Trattenero, I., Cobianchi, M. & Lupi, C. Can the
morphology of deep-sea benthic foraminifera reveal what caused their extinction during

8. Lupi, C., Bordiga, M. & Cobianchi, M. *Gephyrocapsa* occurrence during the Middle
(2012).

9. Hayward, B. W. *et al.* The last global extinction (Mid-Pleistocene) of deep-sea benthic

10. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed
