Research Article

Synthesis and antibacterial activity of novel 2-(arylimino)thiazolidin-4-one and 2-(benzylidenehydrazono)-3-arylthiazolidin-4-one derivatives

Ebaa M. El-Hossary¹,², Yassin M. Nissan³, Katharina Edkins⁴, Heike Bruhn⁵

¹ National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Cairo, Egypt

² Institute of Pharmacy & Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

³ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt

⁴ School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees, United Kingdom

⁵ Institute for Molecular Infection Biology, SFB 630, University of Würzburg, Josef Schneider Str. 2, Bau 15, 97080 Würzburg, Germany

*Corresponding author: Ebaa M. El-Hossary

National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Cairo, Egypt.

P.O. Box: 29 Nasr City

Tel.: +2 0100 1072957

Fax: +2 02 22749298

E-mail: ebaa.elhossary@eaea.org.eg
ABSTRACT

The ongoing spread of multidrug-resistant bacteria demands an intensive search for new antibacterial agents. In the present study, a series of new 1,3-thiazolidin-4-ones has been synthesized and investigated for its in vitro antibacterial activity. The most potent antibacterial compound 4c was found to be active, at low micromolar range, against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and the pneumonic plague causative agent Yersinia pestis with minimum inhibitory concentrations of 5 µM, 2.5 µM, 2.5 µM and 5 µM, respectively. Compound 4c showed the ability to kill E. faecalis JH212 strain with a minimum bactericidal concentration of 5 µM. Furthermore, compounds 9b and 10a inhibited the biofilm formation in S. epidermidis, where they showed 70% to 80% inhibition at a concentration of 40 µM.

Key words:
1,3-Thiazolidin-4-one
Antibacterial activity
Minimum inhibitory concentration
Minimum bactericidal concentration
Biofilm formation
INTRODUCTION

Currently, infectious diseases are the second leading cause of death worldwide. Bacterial resistance against antibiotics is an increasing health problem in both community and hospital setting. It has a noteworthy impact on the mortality rates, morbidity rates and the financial burden associated. Although various novel antibacterial drugs had been introduced into the market in the past decades, the prevalence of multidrug-resistant pathogens remains among the major health problems which raises severe concern around the globe (Bassetti et al., 2013; Butler et al., 2013; Kumarasamy et al., 2010; Lewis, 2013; Pendleton et al., 2013).

Staphylococci and Enterococci are Gram-positive bacteria that are responsible for several community and hospital acquired infections. *Staphylococcus aureus* causes a wide range of infections from simple skin and soft tissue infections to serious illnesses like pneumonia, infective endocarditis and sepsis (Tong et al., 2015; Valour et al., 2013). *Staphylococcus epidermidis* is regarded as the most frequent cause of nosocomial and indwelling medical device-associated infections. It causes more persistent infections due to its high ability to resist antibiotic treatments through biofilm formation (Gomes et al., 2014; Namvar et al., 2014; Otto, 2009).

Since the beginning of the antibiotic era, the isolation of multidrug resistant enterococci has become increasingly common in hospital setting. *Enterococcus faecalis* and *Enterococcus faecium* are the most predominant species, cultured from humans, representing more than 90% of clinical isolates. *E. faecalis* infective endocarditis is still a very serious disease, associated with the presence of highly gentamicin-resistant strains and in-hospital mortality rates around 20% (Courvalin, 2006; Dahl and Bruun, 2013; de Perio et al., 2006; Deshpande et al., 2007). On the other hand, the gram-negative bacterium *Yersinia pestis* is the causative agent of pneumonic
plague; which is the most severe manifestation of plague. The mortality rates of pneumonic plague are approximately 100% in untreated cases (Pechous et al., 2015).

1,3-Thiazolidin-4-ones are a class of compounds that have shown potential as antibacterials (Aridoss et al., 2009; Gopalakrishnan et al., 2009; Jain et al., 2012; Poyraz et al., 2013; Sayyed et al., 2006; Verma and Saraf, 2008; Vicini et al., 2006; Vicini et al., 2008). Thiazolidin-4-ones have been found as inhibitors of the bacterial enzyme MurB; a key enzyme responsible for the synthesis of peptidoglycan (Andres et al., 2000). In this study, a series of 2-(arylmino)thiazolidin-4-ones and 2-(benzylidenehydrazono)-3-arylthiazolidin-4-ones was synthesized. The synthesized compounds were tested for their in vitro antibacterial activity against selected clinically important pathogenic microbes.

RESULTS AND DISCUSSION

Chemistry

The synthesis of the target 1,3-thiazolidin-4-one derivatives started with the conversion of the commercially available sulfanilamide 1 into the corresponding thioureido derivatives 2a-c (Roth and Degering, 1945) when sulfanilamide 1 reacted with the appropriate isothiocyanate derivative (Scheme 1). The thioureido derivatives 2a-c were then refluxed with an equimolar amount of chloroacetic acid in glacial acid to give the respective 4-(4-oxo-3-substitutedthiazolidin-2-ylideneamino)benzenesulfonamide derivatives 3a-c (Scheme 1). IR spectra of compounds 3a-c revealed strong characteristic intense bands at 1712-1724 cm⁻¹ which correspond to the carbonyl group of the 1,3-thiazolidin-4-one ring. ¹H-NMR spectra of compounds 3a-c displayed singlets at 4.04-4.16 ppm for the two protons of the methylene (-CH₂-) of the 1,3-thiazolidin-4-one nucleus. ¹³C-NMR spectra of compounds 3a-c exhibited new signals at 29.07-32.74 ppm, ascribed to the
methylene group, confirming the intramolecular cyclization and formation of the 1,3-thiazolidin-4-one ring.

Similarly, compounds 4a-c were synthesized by refluxing the thioureido derivatives 2a-c with an equimolar amount of diethyl bromomalonate in glacial acid (Scheme 1). IR spectra of the compounds 4a-c were characterized by the presence of two strong bands corresponding to the carbonyl group of the ethyester moiety and the carbonyl group of the 1,3-thiazolidin-4-one ring at 1689-1751 cm\(^{-1}\). \(^1\)H-NMR spectra of compounds 4a-c exhibited triplets and quartets corresponding to the ethyester substituent at position 5. The synthesis of compounds 5a-c was attained by refluxing the corresponding thioureido derivatives 2a-c with an equimolar amount of maleic anhydride in glacial acid (Scheme 1). IR spectra of the 2-(4-oxothiazolidin-5-yl)acetic acid derivatives 5a-c showed two bands representing the carbonyl group of the 1,3-thiazolidin-4-one nucleus and the carbonyl group of the acetic acid moiety at 1660-1708 cm\(^{-1}\).

The 4-isothiocyanatobenzenesulfonamide 6 was obtained by stirring a solution of sulfanilamide 1 in distilled water containing an equimolar amount of thiophosgen (El-Gaby et al., 2009). Compound 6 was then stirred with an excess amount of hydrazine hydrate to give N-(4-sulfamoylphenyl)-hydrazinecarbothioamide 7 (Sriram et al., 2009). The Schiff’s bases 8a,b were prepared by refluxing compound 7 with an equimolar amount of the appropriate aldehyde in methanol (Scheme 2). \(^1\)H-NMR spectrum of compound 8a displayed signals at 10.32 and 12.05 ppm, which were exchangeable in D\(_2\)O, confirming the presence of two NH groups of the hydrazinecarbothioamide.

The \(^1\)C-NMR spectrum of compound 8b was characterized by the appearance of a new signal at 39.66 ppm ascribed to the two carbon atoms of the N(CH\(_3\))\(_2\) group.

Additionally, \(^1\)H-NMR spectra of compounds 8a,b exhibited signals at 8.15 and 8.06 ppm, respectively, for the imine proton of (N=CH). In a similar way to the synthetic pathway of the target 1,3-thiazolidin-4-ones outlined in Scheme 1, the 2-(4-(substituted)benzylidene)-N-(4-
sulfamoylphenyl)-hydrazinecarbothioamides 8a,b were cyclized into the corresponding 1,3-thiazolidin-4-one derivatives 9a,b by reaction with an equimolar amount of monochloroacetic acid (Scheme 2). IR spectra of compounds 9a,b revealed characteristic bands at 1732, 1697 cm⁻¹, respectively, which correspond to the carbonyl group of the 1,3-thiazolidin-4-one ring. ¹H-NMR spectra of compounds 9a,b displayed signals at 4.13 and 4.09 ppm, respectively, for the two protons of the methylene group of the 1,3-thiazolidin-4-one ring.

In addition, ¹H-NMR spectrum of compound 9b revealed a singlet at 2.97 ppm representing the 6 protons of the dimethylamino group. The Schiff’s bases 8a,b were also cyclized into the corresponding 1,3-thiazolidin-4-one derivatives 10a,b, by refluxing with an equimolar amount of diethyl bromomalonate in glacial acetic acid (Scheme 2). IR spectra of compounds 10a,b showed two bands for the two carbonyl groups; the ethyl ester moiety and the 1,3-thiazolidin-4-one ring at 1612-1739 cm⁻¹. ¹H-NMR spectra of compounds 10a,b exhibited triplets and quartets representing the ethyl group of the ethyl ester substituent at position 5.

Finally, the synthesis of the 1,3-thiazolidin-4-one derivatives 11a,b was attained by refluxing the corresponding Schiff’s bases 8a,b, with an equimolar amount of maleic anhydride in glacial acetic acid (Scheme 2). ¹H-NMR spectra of compounds 11a,b revealed new signals at 10.86 and 10.75 ppm, respectively, corresponding to the one proton of the carboxylic OH group.

To confirm the cyclization pattern of the 1,3-thiazolidin-4-one ring, compound 3a was subjected to x-ray crystallography measurement. Crystals suitable for X-ray diffraction were grown from dichloromethane solution by slow cooling. The structure could be determined in the triclinic space group P-1 with four symmetric independent molecules in the asymmetric unit (Z’ = 4). This is due to a break in symmetry by the disorder of the central phenyl rings. The bond lengths and angles are all within normal ranges (Allen et al., 1987). The molecules of 3a adopted two different conformations in this structure, with the angle between the thiazolidinone and the phenyl ring either
60° or -50° (Figure 1a). This has no influence on the overall packing and it is assumed that due to the comparable size of the phenyl ring and the sulfonamide terminal group, the phenyl ring can rotate rather freely. The crystal packing consists of pseudo-centrosymmetric dimers of 3a stabilized through weak C-H···O hydrogen bonds (Figure 1b). These dimers are connected to the next dimer through N-H···O hydrogen bonds, between the terminal amide group and the C=O group of the thiazolidinone rings, linking the structure together along the crystallographic b-axis. An additional N-H···O hydrogen bond between the terminal amide group and the S=O group of the sulfonamide links the molecules along b. This packing results in the formation of stacks along the crystallographic a-axis which consist of alternate disordered and non-disordered molecules.

Antibacterial activity

All of the newly synthesized final compounds have been screened at a highest concentration of 40 µM, for their in vitro antibacterial activity against selected clinically important pathogenic bacteria. These bacteria include the Gram-positive bacteria; *S. aureus* (Strains; 8325, HG001, MA12, RN1 and Xen29), *S. epidermidis* (Strains; RP62A, 195 and 047), *E. faecalis* JH212, *E. faecium* 6413 and the Gram-negative bacteria; *Escherichia coli* 536, *Pseudomonas aeruginosa*, *Y. pestis* KUMA and *Yersinia pseudotuberculosis* 252 01A. Staphylococci, Enterococci and *P. aeruginosa* belong to the so called “ESKAPE” pathogens; pathogenic bacteria that are responsible for the highest impact in bacterial resistance (Pendleton et al., 2013). Moreover, *S. aureus*, *S. epidermidis*, *P. aeruginosa*, and *E. coli* can cause persistent infections that are resistant to antibiotic treatments due to their ability to form biofilm (Romling and Balsalobre, 2012).

All the tested compounds have been evaluated for their in vitro antibacterial activity by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC is the lowest concentration of the tested compound that inhibits the visible growth of the tested
bacterial strain after overnight incubation while MBC is the lowest concentration of the tested
compound required to kill the tested bacterium. Antibacterial agents are usually considered
bactericidal if the MBC value doesn’t exceed four folds the MIC value (French, 2006). All the
tested compounds showed MIC values higher than 40 µM except compounds 4a and 4c.
Gentamicin and tetracycline were used in the test as reference drugs. The antibacterial activities of
compounds 4a and 4c are presented in Table 1.

Based on the results, mentioned in Table 1, it was found that the presence of ethylester at position 5
on the 1,3-thiazolidin-4-one ring is an essential feature for activity whereas the other congeners
with 5-unsubstituted (compounds 3a-c) or 5-acetic acid side chain (compounds 5a-c) are devoid of
activity. However, the nature of the substituent at position 3 was also critical for keeping compound
activity as only the methyl and the phenyl substituents (compounds 4a and 4c, respectively) were
able to maintain the antibacterial activity. This was evidenced by compound 4b in which extending
the methyl into ethyl led to complete loss of activity (compound 4a compared to compound 4b).
Generally, compound 4c, with a phenyl substitution at position 3 of the 1,3-thiazolidin-4-one
nucleus, showed lower MIC values when compared with the MIC values of compound 4a with the
3-methyl substituent. In fact, in most cases, compound 4c showed a double potency compared to
compound 4a. The higher activity of the more lipophilic ethylester derivatives 4a and 4c compared
to the carboxylic acid derivatives 5a and 5c might be due to their higher ability to penetrate the
bacterial outer membrane. Additionally, these ethylester derivatives might act as prodrugs which
enhance the penetration of their carboxylic acid counterparts. However, this requires further
investigations by testing the major form of the compounds existing in the bacterial cells after
penetration of the compounds.

Compound 4c exhibited MIC values ranging from 5 to 20 µM against five different *S. aureus*
strains and MIC values ranging from 2.5 to 10 µM against three different *S. epidermidis* strains.
Compound 4c also showed an antibacterial activity against *E. faecalis* with MIC value of 2.5 µM and MBC value of 5 µM. The potency of compound 4c against *E. faecalis* is significantly high when compared to the reference drug gentamicin, MIC value of gentamicin = 26.2 µM, showing that this compound is a potent bactericidal.

Most importantly, compounds 4a and 4c revealed antibacterial activity, not only against different Gram-positive pathogens, but also against the Gram-negative bacterium *Y. pestis* KUMA with MIC values of 10 µM and 5 µM, respectively. On the other hand, none of the 2-(benzylidenehydrazono)-3-arylthiazolidin-4-one derivatives, described in Scheme 2, showed antibacterial activity.

Inhibition of biofilm formation

Many microbes form biofilm in response to many factors in which cells stick to each other on a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance. The factors, by which biofilm is formed, may include cellular recognition of specific or non-specific attachment sites on a surface. In some cases, the factors include the exposure of planktonic cells to sub-inhibitory concentrations of antibiotics. Biofilms are a serious problem for public health because of the increased resistance of biofilm-associated microorganisms to antimicrobial agents and the potential for these microorganisms to cause infections in patients with indwelling medical devices (Hoffman et al., 2005; Karatan and Watnick, 2009).

Unlike the antibacterial activity, the 2-(benzylidenehydrazono)-3-arylthiazolidin-4-one derivatives 9b and 10a were able to inhibit the biofilm formation in *S. epidermidis*, where they showed 70% to 80% inhibition at a concentration of 40 µM. This highlighted the fact that this structure feature was crucial for biofilm inhibition activity. However, this was limited by the type of the substitution at position 4 of the 1,3-thiazolidin-4-one ring; where only the 4-unsubstituted derivative 9b and the 4-
ethoxycarbonyl derivative 10a were active as biofilm formation inhibitors. Generally, the presence of the acetic acid side chain at position 5 of the thiazolidinone ring (compounds 5a-c and 11a,b) resulted in analogues, lacking both antibacterial and biofilm inhibition activity.

CONCLUSION

We report herein the synthesis of new 1,3-thiazolidin-4-one derivatives and their in vitro antibacterial activity. Based on the previous biological results, we can suggest that 1,3-thiazolidin-4-one derivatives with an ethylester moiety at position 5 (compounds 4a and 4c) are good lead compounds for further biological evaluation as antibacterial agents. Compounds 4a and 4c were not only active against different Gram-positive pathogens, but also against the Gram-negative bacterium Y. pestis. The antibacterial activity of compounds 4a and 4c can be due to the potential MurB inhibition activity of the thiazolidin-4-one nucleus. In addition, compounds 9b and 10a revealed biofilm inhibition activity against S. epidermidis biofilm formation. These obtained results are encouraging for further synthesis of new 1,3-thiazolidin-4-one derivatives with different substitutions at positions 3 and 5, as potential antibacterial agents.

EXPERIMENTAL

Chemical syntheses

Materials and methods

1H-NMR and 13C-NMR spectra were recorded on an Avance 400 nuclear magnetic resonance spectrometer, Bruker Biospin GmbH Rheinstetten, Germany (1H 400.123 MHz, 13C 100.613 MHz). As an internal standard, the signals of the deuterated solvents were used (DMSO-d_6: 1H 2.5 ppm, 13C 39.43 ppm). The following abbreviations describing the multiplicity are used: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (dd) doublet of doublet. IR spectra were obtained with a Biorad
PharmalyzIR FT-IR spectrometer (Biorad, Cambridge, MA, USA). Melting points were measured using an apparatus Sanyo Gallenkamp (Sanyo Gallenkamp, Loughborough, UK) and were not corrected. Elemental microanalyses were performed at the microanalytical center; Al-Azhar University, Cairo, Egypt. Thin layer chromatography (TLC) was carried out on TLC aluminum sheets, silica gel F254, (Merck KGaA, Darmstadt, Germany), and visualized in ultraviolet (UV) chamber. All chemicals were purchased from Sigma-Aldrich Chemicals (Deisenhofen, Germany), Acros Organics (Geel, Belgium) and VWR International (Darmstadt, Germany), and were used without further purification.

General procedures for the synthesis of 4-(3-substitutedthioureido)benzenesulfonamides (2a-c)

The appropriate isothiocyanate (12 mmol) was added to a solution of sulfanilamide 1 (10 mmol) in absolute ethanol (20 mL) then few drops of triethylamine were added to the solution and refluxed for 24 h. A white precipitate was formed, filtered off, dried and recrystallized from ethanol to give compounds 2a-c.

4-(3-Methylthioureido)benzenesulfonamide (2a)

Yield, 88%; m.p. 222-224 °C; IR, cm⁻¹: 3313, 3294, 3132 (NH, NH₂), 3055 (CH arom.), 2943, 2870 (CH aliph.), 1249 (C=S), 1369, 1161 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 2.94 (d, 3H, CH₃), 7.25 (s, 2H, SO₂NH₂, exchangeable with D₂O), 7.62 (d, 2H, J = 8.51 Hz, CHₐром.), 7.74 (d, 2H, J = 8.95 Hz, CHₐром.), 7.97 (s, 1H, NH, exchangeable with D₂O), 9.84 (s, 1H, NH, exchangeable with D₂O).

¹³C-NMR (DMSO-d₆, ppm) δ: 31.07 (CH₃), 121.46, 126.21, 138.36, 142.59 (CHₐром.), 180.98 (C=S).

4-(3-Ethylthioureido)benzenesulfonamide (2b)

Yield, 92%; m.p. 209-211 °C; IR, cm⁻¹: 3352, 3298, 3155 (NH, NH₂), 3062 (CH arom.), 2974, 2890 (CH aliph.), 1249 (C=S), 1377, 1165 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.19 (t, 3H, J = 7.91 Hz, CH₃), 3.45 (q, 2H, J = 7.09 Hz, CH₂), 7.23 (s, 2H, SO₂NH₂), 7.61 (d, 2H, J = 8.62 Hz, CHₐром.), 7.73 (CH₃), 7.35 (d, 2H, J = 8.51 Hz, CHₐром.), 7.97 (s, 1H, NH, exchangeable with D₂O), 10.04 (s, 1H, NH, exchangeable with D₂O).

¹³C-NMR (DMSO-d₆, ppm) δ: 28.96 (CH₂), 30.07 (CH₃), 31.43, 121.42, 126.21, 138.34, 142.56 (CHₐром.), 180.98 (C=S).
(d, 2H, J= 8.9 Hz, CH
arom.), 7.95 (s, 1H, NH), 9.82 (s, 1H, NH). 13C-NMR (DMSO-d$_6$, ppm) δ: 13.92 (CH$_3$), 25.46 (CH$_2$), 121.50, 126.21, 138.38, 142.69 (CH
arom.), 179.99 (C=S).

4-(3-Phenylthiourea)benzenesulfonamide (2c)

Yield, 86%; m.p. 204-206 °C; IR, cm$^{-1}$: 3344, 3240, 3165 (NH, NH$_2$), 3008 (CH arom.), 1242 (C=S), 1334, 1157 (SO$_2$). 1H-NMR (DMSO-d$_6$, ppm) δ: 7.15 (dd, 1H, CH
arom.), 7.28 (s, 2H, SO$_2$NH$_2$), 7.35 (dd, 2H, CH
arom.), 7.49 (d, 2H, CH
arom.), 7.70 (d, 2H, J= 8.73 Hz, CH
arom.) 7.75 (d, 2H, J= 8.61 Hz, CH
arom.), 10.02 (s, 1H, NH), 10.05 (s, 1H, NH).

General procedures for the synthesis of 4-(4-oxo-3-substituted-thiazolidin-2-ylideneamino)benzenesulfonamides (3a-c)

10 mmol of monochloroacetic acid and a catalytic amount of anhydrous sodium acetate were added to a solution of compound 2a, 2b or 2c (10 mmol) in glacial acetic acid (20 mL). The mixture was refluxed for 24 h and left to cool then poured into crushed ice. The formed precipitate was filtered off and crystallized from ethanol to give the corresponding 1,3-thiazolidin-4-one derivatives 3a-c.

4-(3-Methyl-4-oxo-thiazolidin-2-ylideneamino)benzenesulfonamide (3a)

Yield, 58%; m.p. 183-185 °C; IR, cm$^{-1}$: 3332, 3221 (NH$_2$), 3097 (CH arom.), 2943, 2851 (CH aliph.), 1712 (C=O), 1620 (C=N), 1377, 1153 (SO$_2$). 1H-NMR (DMSO-d$_6$, ppm) δ: 3.17 (s, 3H, N-CH$_3$), 4.06 (s, 2H, CH$_2$), 7.09 (d, 2H, J= 8.51 Hz, CH
arom.), 7.31 (s, 2H, SO$_2$NH$_2$, exchangeable with D$_2$O), 7.80 (d, 2H, J= 8.82 Hz, CH
arom.). 13C-NMR (DMSO-d$_6$, ppm) δ: 29.07 (CH$_2$), 32.74 (CH$_3$), 121.16, 127.06, 139.62, 151.12 (CH
arom.), 156.89 (N=C), 171.80 (C=O). Anal. Calcd. For C$_{10}$H$_{11}$N$_3$O$_3$S$_2$ (285.34): C, 42.09; H, 3.89; N, 14.73. Found: C, 42.21; H, 3.93; N, 14.90.

4-(3-Ethyl-4-oxo-thiazolidin-2-ylideneamino)benzenesulfonamide (3b)

Yield, 64%; m.p. 169-171 °C; IR, cm$^{-1}$: 3329, 3255 (NH$_2$), 3080 (CH arom.), 2983, 2860 (CH aliph.), 1732 (C=O), 1643 (C=N), 1373, 1168 (SO$_2$). 1H-NMR (DMSO-d$_6$, ppm) δ: 1.21 (t, 3H, J= 7.2 Hz, CH$_3$), 7.11 (s, 1H, CH
arom.), 7.95 (d, 1H, J= 8.82 Hz, CH
arom.). 13C-NMR (DMSO-d$_6$, ppm) δ: 29.07 (CH$_2$), 32.74 (CH$_3$) 121.16, 127.06, 139.62, 151.12 (CH
arom.), 156.89 (N=C), 171.80 (C=O). Anal. Calcd. For C$_{11}$H$_{13}$N$_3$O$_3$S$_2$ (287.36): C, 43.48; H, 3.95; N, 14.78. Found: C, 43.39; H, 3.95; N, 14.74.
7.11 Hz, CH₃), 3.81 (q, 2H, J= 7.17 Hz, CH₃), 4.04 (s, 2H, CH₂), 7.09 (d, 2H, J= 8.49 Hz, CHarom.), 7.31 (s, 2H, SO₂NH₂), 7.81 (d, 2H, J= 8.91 Hz, CHarom.). ¹³C-NMR (DMSO-d₆, ppm) δ: 12.21 (CH₂C₃H), 32.73 (CH₂-C=O), 37.42 (CH₂CH₃), 121.25, 127.13, 139.71, 151.19 (CHarom.), 156.11 (N=≡C), 171.64 (C=O). Anal. Calcd. For C₁₁H₁₃N₃O₃S₂ (299.37): C, 44.13; H, 4.38; N, 14.04. Found: C, 44.22; H, 4.39; N, 14.15.

4-(4-Oxo-3-phenylthiazolidin-2-ylideneamino)benzenesulfonamide (3c)

Yield, 60%; m.p. 190-192 °C; IR, cm⁻¹: 3363, 3204 (NH₂), 3051 (CH arom.), 1724 (C=O), 1635 (C=N), 1373, 1153 (SO₂).

¹H-NMR (DMSO-d₆, ppm) δ: 4.16 (s, 2H, CH₂), 6.88 (d, 2H, CHarom.), 7.09 (dd, 1H, CHarom.), 7.34 (dd, 2H, CHarom.), 7.42 (d, 2H, J= 8.88 Hz, CHarom.), 7.45 (s, 2H, SO₂NH₂), 7.53 (d, 2H, J= 8.97 Hz, CHarom.). ¹³C-NMR (DMSO-d₆, ppm) δ: 32.74 (CH₂), 122.55, 124.29, 128.36, 128.89, 129.13, 135.19, 148.06, 155.78 (CHarom.), 171.54 (N=≡C), 172.57 (C=O).

General procedures for the synthesis of ethyl 4-oxo-3-substituted-2-(4-sulfamoylphenylimino)thiazolidine-5-carboxylates (4a-c)

10 mmol of diethylbromomalonate and a catalytic amount of anhydrous sodium acetate were added to a solution of compound 2a, 2b or 2c (10 mmol) in glacial acetic acid (20 mL). The mixture was refluxed for 24 h and left to cool then poured into crushed ice. The formed precipitate was filtered off and crystallized from ethanol to give the corresponding 1,3-thiazolidin-4-one derivatives 4a-c.

Ethyl 3-methyl-4-oxo-2-(4-sulfamoylphenylimino)thiazolidine-5-carboxylate (4a)

Yield, 46%; m.p. 106-108 °C; IR, cm⁻¹: 3356, 3255 (NH₂), 3070 (CH arom.), 2978, 2870 (CH aliph.), 1724, 1698 (2C=O), 1369, 1157 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.25 (t, 3H, J= 7.21 Hz, CH₃), 3.19 (s, 3H, CH₃), 3.72 (q, 2H, J= 7.03 Hz, CH₂), 4.10 (s, 1H, CH), 7.09 (d, 2H, J= 8.63 Hz, CHarom.), 7.32 (s, 2H, SO₂NH₂), 7.82 (d, 2H, J= 8.72 Hz, CHarom.). ¹³C-NMR (DMSO-d₆, ppm)
δ: 13.52 (COOCH₂CH₃), 21.90 (N-CH₃), 29.15 (H= C=O), 32.81 (COOCH₂CH₃), 121.24, 127.14, 139.70, 151.20 (CH₃ arom.), 155.51 (N=C), 171.05 (COOCH₂CH₃), 171.89 (N=C=O). Anal. Calcd. For C₁₃H₁₅N₃O₅S₂ (357.41): C, 43.69; H, 4.23; N, 11.76. Found: C, 43.77; H, 4.25; N, 11.85.

Ethyl 3-ethyl-4-oxo-2-(4-sulfamoylphenylimino)thiazolidine-5-carboxylate (4b)

Yield, 40%; m.p. 159-161 °C; IR, cm⁻¹: 3544, 3461 (NH₂), 3070 (CH arom.), 2989, 2877 (CH aliph.), 1751, 1721 (2C=O), 1390, 1198 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.13 (t, 3H, J = 7.18 Hz, CH₃), 1.19 (t, 3H, J = 7.34 Hz, CH₃), 3.74 (q, 2H, J = 7.51 Hz, CH₂), 3.84 (q, 2H, J = 7.42 Hz, CH₂), 4.05 (s, 1H, CH), 7.09 (d, 2H, J = 8.59 Hz, CH₃ arom.), 7.79 (s, 2H, SO₂NH₂), 7.84 (d, 2H, J = 8.79 Hz, CH₃ arom.). ¹³C-NMR (DMSO-d₆, ppm) δ: 11.24 (CH₃CH₂), 13.41 (COOCH₂CH₃), 34.96 (CH₃CH₂), 56.42 (H= C=O), 64.21 (COOCH₂CH₃), 121.22, 127.44, 133.57, 140.57 (CH₃ arom.), 155.29 (N=C), 164.78 (COOCH₂CH₃), 168.96 (N=C=O). Anal. Calcd. For C₁₄H₁₇N₃O₅S₂ (371.43): C, 45.27; H, 4.61; N, 11.31. Found: C, 45.39; H, 4.69; N, 11.46.

Ethyl 4-oxo-3-phenyl-2-(4-sulfamoylphenylimino)thiazolidine-5-carboxylate (4c)

Yield, 53%; m.p. 126-128 °C; IR, cm⁻¹: 3356, 3259 (NH₂), 3062 (CH arom.), 2981, 2871 (CH aliph.), 1728, 1701 (2C=O), 1369, 1153 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.23 (t, 3H, J = 7.65 Hz, CH₃), 4.21 (q, 2H, J = 7.71 Hz, CH₂), 4.32 (s, 1H, CH), 6.87 (dd, 1H, CH₃ arom.), 7.04 (dd, 2H, CH₃ arom.), 7.29 (d, 2H, CH₃ arom.), 7.41 (d, 2H, J = 8.80 Hz, CH₃ arom.), 7.52 (s, 2H, SO₂NH₂), 7.76 (d, 2H, J = 8.91 Hz, CH₃ arom.). ¹³C-NMR (DMSO-d₆, ppm) δ: 13.86 (COOCH₂CH₃), 28.62 (H= C=O), 32.75 (COOCH₂CH₃), 120.55, 120.94, 124.10, 127.02, 128.37, 128.90, 129.15, 129.54 (CH₃ arom.), 154.95 (N=C), 170.91 (COOCH₂CH₃), 171.50 (N=C=O). Anal. Calcd. For C₁₈H₁₇N₃O₅S₂ (419.47): C, 51.54; H, 4.08; N, 10.02. Found: C, 51.63; H, 4.11; N, 10.09.
General procedures for the synthesis of 2-(4-oxo-3-substituted-2-(4-sulfamoylphenylimino)thiazolidin-5-yl)acetic acids (5a-c)

10 mmol of maleic anhydride was added to a solution of compound 2a, 2b or 2c (10 mmol) in glacial acetic acid (20 mL). The mixture was refluxed for 24 h and left to cool then poured into crushed ice. The formed precipitate was filtered off and crystallized from ethanol to give the corresponding 1,3-thiazolidin-4-one derivatives 5a-c.

2-(3-Methyl-4-oxo-2-(4-sulfamoylphenylimino)thiazolidin-5-yl)acetic acid (5a)

Yield, 61%; m.p. 160-162 °C; IR, cm⁻¹: 3356, 3205 (NH₂), 3100 (OH), 3052 (CH arom.), 2985, 2878 (CH aliph.), 1697, 1674 (2C=O), 1370, 1157 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.95 (d, 2H, J = 6.52 Hz, CH₂), 3.21 (s, 3H, CH₃), 4.54 (t, 1H, J = 6.79 Hz, CH), 7.05 (d, 2H, J = 8.69 Hz, CH arom.), 7.71 (s, 2H, SO₂N₂), 7.80 (d, 2H, J = 9.0 Hz, CH arom.), 10.56 (s, 1H, OH).

¹³C-NMR (DMSO-d₆, ppm) δ: 21.03 (N-CH₃), 29.19 (CH₂), 43.58 (H-C=O), 118.39, 126.71, 138.53, 151.32 (CH arom.), 156.89 (-N=C), 168.45 (COOH), 173.72 (C=O). Anal. Calcd. For C₁₂H₁₃N₃O₅S₂ (343.38): C, 41.97; H, 3.82; N, 12.24. Found: C, 42.08; H, 3.80; N, 12.38.

2-(3-Ethyl-4-oxo-2-(4-sulfamoylphenylimino)thiazolidin-5-yl)acetic acid (5b)

Yield, 61%; m.p. 188-190 °C; IR, cm⁻¹: 3352, 3263 (NH₂), 3113 (OH), 3052 (CH arom.), 2997, 2865 (CH aliph.), 1701, 1658 (2C=O), 1334, 1157 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.21 (t, 3H, J = 7.33 Hz, CH₃), 1.81 (d, 2H, J = 7.01 Hz, CH₂), 3.80 (q, 2H, J = 7.64 Hz, CH₂), 4.29 (t, 1H, J = 6.91 Hz, CH), 7.09 (d, 2H, J = 8.90 Hz, CH arom.), 7.72 (s, 2H, SO₂NH₂), 7.78 (d, 2H, J = 9.0 Hz, CH arom.), 10.49 (s, 1H, OH). ¹³C-NMR (DMSO-d₆, ppm) δ: 21.14 (CH₂CH₂), 22.36 (CH₂), 38.45 (CH₃CH₂), 43.50 (HC=O), 121.30, 127.07, 139.63, 141.52 (CH arom.), 155.93 (-N=C), 168.40 (COOH), 172.97 (C=O). Anal. Calcd. For C₁₃H₁₅N₃O₅S₂ (357.41): C, 43.69; H, 4.23; N, 11.76. Found: C, 43.77; H, 4.27; N, 11.83.
2-(4-Oxo-3-phenyl-2-(4-sulfamoylphenylimino)thiazolidin-5-yl)acetic acid (5c)

Yield, 63%; m.p. 171-173 °C; IR, cm⁻¹: 3348, 3300 (NH₂), 3215 (OH), 3066 (CH arom.), 2931, 2875 (CH aliph.), 1708, 1660 (2C=O), 1388, 1161 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 1.91 (d, 2H, J= 6.64 Hz, CH₂), 4.49 (t, 1H, J= 6.75 Hz, CH), 6.87 (dd, 1H, CHarom.), 7.03 (dd, 2H, CHarom.), 7.29 (d, 2H, CHarom.), 7.46 (d, 2H, J= 8.92 Hz, CHarom.), 7.74 (s, 2H, SO₂NH₂), 7.95 (d, 2H, J= 8.83 Hz, CHarom.), 10.35 (s, 1H, OH). ¹³C-NMR (DMSO-d₆, ppm) δ: 21.02 (CH₂), 43.62 (HC=C=O), 120.71, 121.09, 122.93, 127.05, 128.47, 128.92, 129.18, 139.54 (CHarom.), 155.82 (-N=C), 168.86 (COOH), 171.97 (C=O). Anal. Calcd. For C₁₇H₁₅N₃O₅S₂ (405.45): C, 50.36; H, 3.73; N, 10.36. Found: C, 50.49; H, 3.71; N, 10.44.

Synthesis of 4-isothiocyanatobenzenesulfonamide (6)

A solution of sulfanilamide 1 in water was prepared by stirring sulfanilamide 1 (10 mmol) in distilled water (40 mL), containing hydrochloric acid (10 mmol), for 5 min. Thiophosgen (10 mmol) was added to the prepared solution and the mixture was stirred at room temperature for 2 h. The formed precipitate was filtered off and dried to give compounds 6 (El-Gaby et al., 2009).

Synthesis of N-(4-sulfamoylphenyl)hydrazinecarbothioamide (7)

A mixture, of compound 6 (10 mmol) and excess amount of hydrazine hydrate in isopropanol (40 mL), was stirred at room temperature for 4 hours. The formed precipitate was filtered off and dried to give compound 7 (Sriram et al., 2009).

General procedures for the synthesis of 2-(4-(substituted)benzylidene)-N-(4-sulfamoylphenyl)hydrazinecarbothioamides (8a,b)

A mixture, of compound 7 (10 mmol) and the appropriate aldehyde (10 mmol) in methanol (30 mL), was refluxed for 5 h. The formed precipitate was filtered, while hot, and the obtained solid was dried to give compounds 8a,b.
2-(4-Chorobenzylidene)-N-(4-sulfamoylphenyl)hydrazinecarbothioamide (8a)

Yield, 59%; m.p. 240-242 °C; IR, cm⁻¹: 3288, 3245, 3131 (NH, NH₂), 3089 (CH arom.), 2978, 2873 (CH aliph.), 1587 (C=N), 1278 (C=S), 1393, 1158 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 6.70 (d, 2H, J= 8.48 Hz, CHₐrom.), 7.25 (s, 2H, SO₂NH₂, exchangeable with D₂O), 7.56 (d, 2H, J= 8.72 Hz, CHₐrom.), 8.15 (s, 1H, -N=CH), 10.32 (s, 1H, NH, exchangeable with D₂O), 12.05 (s, 1H, NH, exchangeable with D₂O). ¹³C-NMR (DMSO-d₆, ppm) δ: 125.42, 125.63, 129.07, 130.00, 132.82, 134.63, 140.35, 142.01 (CHₐrom.), 142.15 (N=CH), 175.93 (C=S). Anal. Calcd. For C₁₄H₁₃ClN₄O₂S₂ (368.86): C, 45.59; H, 3.55; N, 15.19. Found: C, 45.65; H, 3.58; N, 15.32.

2-(4-(Dimethylamino)benzylidene)-N-(4-sulfamoylphenyl)hydrazinecarbothioamide (8b)

Yield, 55%; m.p. 225-227 °C; IR, cm⁻¹: 3333, 3245, 3135 (NH, NH₂), 3090 (CH arom.), 2974, 2899 (CH aliph.), 1587 (C=N), 1268 (C=S), 1364, 1154 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 2.98 (s, 6H, N(CH₃)₂), 6.73 (d, 2H, J= 8.51 Hz, CHₐrom.), 7.32 (s, 2H, SO₂NH₂), 7.70 (d, 2H, J= 8.56 Hz, CHₐrom.), 7.78 (d, 2H, J= 8.81 Hz, CHₐrom.), 7.86 (d, 2H, J= 8.89 Hz, CHₐrom.), 8.06 (s, 1H, -N=CH), 10.10 (s, 1H, NH), 11.76 (s, 1H, NH). ¹³C-NMR (DMSO-d₆, ppm) δ: 39.66 (N(CH₃)₂), 111.50, 120.82, 124.67, 125.50, 129.08, 139.77, 142.15, 151.55 (CHₐrom.), 144.55 (N=CH), 174.47 (C=S). Anal. Calcd. For C₁₆H₁₉N₅O₂S₂ (377.48): C, 50.91; H, 5.07; N, 18.55. Found: C, 50.99; H, 5.12; N, 18.71.

General procedures for the synthesis of 4-(2-(4-(substituted)benzylidene)hydrazono)-4-oxothiazolidin-3-yl)benzenesulfonamides (9a,b)

10 mmol of monochloroacetic acid and a catalytic amount of anhydrous sodium acetate were added to a solution of compound 8a or 8b (10 mmol) in glacial acetic acid (20 mL). The mixture was refluxed for 24 h and left to cool then poured into crushed ice. The formed precipitate was filtered off and crystallized from ethanol to give the corresponding 4-thiazolidinone derivatives 9a,b.
4-(2-(4-Chlorobenzylidene)hydrazono)-4-oxothiazolidin-3-yl)benzenesulfonamide (9a)

Yield, 53%; m.p. 288-290 °C; IR, cm⁻¹: 3346, 3261 (NH₂), 3062 (CH arom.), 2969, 2885 (CH aliph.), 1732 (C=O), 1620 (C=N), 1393, 1156 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 4.13 (s, 2H, CH₂), 7.39 (d, 2H, J= 8.78 Hz, CH₆arom.), 7.50 (s, 2H, SO₂NH₂, exchangeable with D₂O), 7.54 (d, 2H, J= 8.66 Hz, CH₆arom.), 7.72 (d, 2H, J= 8.94 Hz, CH₆arom.), 7.89 (d, 2H, J= 8.52 Hz, CH₆arom.), 8.30 (s, 1H, N=CH). ¹³C-NMR (DMSO-d₆, ppm) δ: 32.50 (CH₂), 126.53, 128.84, 129.07, 130.00, 132.87, 135.39, 137.69, 144.13 (CH₆arom.), 156.96 (N=CH), 165.49 (N=C=CH), 171.79 (C=O).

Anal. Calcd. For C₁₆H₁₃ClN₄O₃S₂ (408.88): C, 47.00; H, 3.20; N, 13.70. Found: C, 47.08; H, 3.22; N, 13.83.

4-(2-(4-(Dimethylamino)benzylidene)hydrazono)-4-oxothiazolidin-3-yl)benzenesulfonamide (9b)

Yield, 46%; m.p. 218-220 °C; IR, cm⁻¹: 3317, 3263 (NH₂), 3050 (CH arom.), 2920, 2895 (CH aliph.), 1697 (C=O), 1596 (C=N), 1370, 1162 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 2.97 (s, 6H, N(CH₃)₂), 4.09 (s, 2H, CH₂), 7.21 (d, 2H, J= 8.63 Hz, CH₆arom.), 7.50 (s, 2H, SO₂NH₂), 7.56 (d, 2H, J= 8.71 Hz, CH₆arom.), 7.79 (d, 2H, J= 8.99 Hz, CH₆arom.), 7.94 (d, 2H, J= 9.21 Hz, CH₆arom.), 8.15 (s, 1H, N=CH). ¹³C-NMR (DMSO-d₆, ppm) δ: 30.57 (CH₂), 39.92 (N(CH₃)₂), 110.96, 112.96, 121.17, 126.39, 128.89, 134.08, 136.75, 151.26 (CH₆arom.), 144.09 (N=CH), 165.80 (N=C=CH), 174.79 (C=O).

General procedures for the synthesis of ethyl 2-(4-(substituted)benzylidene)hydrazono)-4-oxo-3-(4-sulfamoylphenyl)thiazolidine-5-carboxylates (10a,b)

10 mmol of diethylbromomalonate and a catalytic amount of anhydrous sodium acetate were added to a solution of compound 8a or 8b (10 mmol) in glacial acetic acid (20 mL). The mixture was refluxed for 24 h and left to cool then poured into crushed ice. The formed precipitate was filtered off and crystallized from ethanol to give the corresponding 1,3-thiazolidin-4-one derivatives 10a,b.
Ethyl 2-(4-chlorobenzylidene)hydrazono)-4-oxo-3-(4-sulfamoylphenyl)thiazolidine-5-carboxylate

(10a)

Yield, 48%; m.p. 159-161 °C; IR, cm⁻¹: 3359, 3265 (NH₂), 3092 (CH arom.), 2980, 2890 (CH aliph.), 1739, 1619 (2C=O), 1580 (C=N), 1380, 1162 (SO₂).¹H-NMR (DMSO-d₆, ppm) δ: 1.23 (t, 3H, J = 7.22 Hz, CH₃), 4.21 (q, 2H, J = 7.16 Hz, CH₂), 4.33 (s, 1H, CH), 7.64 (d, 2H, J = 8.71 Hz, CHₐrom.), 7.66 (s, 2H, SO₂NH₂, exchangeable with D₂O), 7.81 (d, 2H, J = 8.69 Hz, CHₐrom.), 8.07 (d, 2H, J = 8.95 Hz, CHₐrom.), 8.50 (s, 1H, N=CH).

¹³C-NMR (DMSO-d₆, ppm) δ: 13.56 (CH₃), 25.46 (H-C=O), 62.01 (CH₂), 126.58, 128.89, 129.12, 132.93, 135.45, 137.73, 144.18 (CHₐrom.), 148.03 (N=CH), 155.21 (N-C=N), 164.21 (COOCH₂CH₃), 171.89 (C=O). Anal. Calcd. For C₁₉H₁₇ClN₄O₅S₂ (480.95): C, 47.45; H, 3.56; N, 11.65. Found: C, 47.59; H, 3.60; N, 11.79.

Ethyl 2-(4-(dimethylamino)benzylidene)hydrazono)-4-oxo-3-(4-sulfamoylphenyl)-thiazolidine-5-carboxylate (10b)

Yield, 40%; m.p. 180-182 °C; IR, cm⁻¹: 3352, 3260 (NH₂), 3075 (CH arom.), 2980, 2891 (CH aliph.), 1725, 1612 (2C=O), 1592 (C=N), 1368, 1196 (SO₂).¹H-NMR (DMSO-d₆, ppm) δ: 1.18 (t, 3H, J = 7.51 Hz, CH₃), 2.86 (s, 6H, N(CH₃)₂), 4.11 (q, 2H, J = 7.49 Hz, CH₂), 4.29 (s, 1H, CH), 7.07 (d, 2H, J = 8.80 Hz, CHₐrom.), 7.31 (s, 2H, SO₂NH₂), 7.53 (d, 2H, J = 8.90 Hz, CHₐrom.), 7.62 (d, 2H, J = 9.10 Hz, CHₐrom.), 7.93 (d, 2H, J = 8.68 Hz, CHₐrom.), 8.18 (s, 1H, N=CH).¹³C-NMR (DMSO-d₆, ppm) δ: 13.93 (CH₃), 29.90 (N(CH₃)₂), 39.96 (H-C=O), 60.71 (CH₂), 106.88, 107.70, 110.01, 125.87, 127.44, 129.49, 132.08, 148.14 (CHₐrom.), 145.85 (N=CH), 188.66 (COOCH₂CH₃), 189.20 (C=O). Anal. Calcd. For C₂₁H₂₃N₅O₅S₂ (489.57): C, 51.52; H, 4.74; N, 14.31. Found: C, 51.63; H, 4.79; N, 14.42.
General procedures for the synthesis of 2-(2-(4-(substituted)benzylidene)hydrazono)-4-oxo-3-(4-sulfamoylphenyl)thiazolidin-5-yl)acetic acids (11a,b)

10 mmol of maleic anhydride was added to a solution of compound 8a or 8b (10 mmol) in glacial acetic acid (20 mL). The mixture was refluxed for 24 h and left to cool then poured into crushed ice. The formed precipitate was filtered off and crystallized from ethanol to give the corresponding 1,3-thiazolidin-4-one derivatives 11a,b.

2-(2-(4-Chlorobenzylidene)hydrazono)-4-oxo-3-(4-sulfamoylphenyl)thiazolidin-5-yl)acetic acid (11a)

Yield, 39%; m.p. 229-231 °C; IR, cm⁻¹: 3353, 3256 (NH₂), 3111 (OH), 3061 (CH arom.), 2933, 2860 (CH aliph.), 1705, 1699 (2C=O), 1617 (C=N), 1385, 1160 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 3.10 (d, 2H, J = 6.50 Hz, CH₂), 4.58 (t, 1H, J = 6.87 Hz, CH), 7.45 (d, 2H, J = 8.88 Hz, CHₐrom.), 7.57 (s, 2H, SO₂NH₂, exchangeable with D₂O), 7.61 (d, 2H, J = 8.92 Hz, CHₐrom.), 7.76 (d, 2H, J = 8.51 Hz, CHₐrom.), 7.98 (d, 2H, J = 8.59 Hz, CHₐrom.), 8.36 (s, 1H, N=CH), 10.86 (s, 1H, OH). ¹³C-NMR (DMSO-d₆, ppm) δ: 21.03 (CH₂), 42.50 (CH), 126.43, 128.96, 129.32, 130.00, 132.89, 135.35, 137.82, 144.13 (CHₐrom.), 156.83 (N=CH), 171.97 (N-C=N), 173.65 (C=O), 173.90 (C=O).

2-(2-(4-(Dimethylamino)benzylidene)hydrazono)-4-oxo-3-(4-sulfamoylphenyl)thiazolidin-5-yl)acetic acid (11b)

Yield, 32%; m.p. 159-161 °C; IR, cm⁻¹: 3362, 3226 (NH₂), 3111 (OH), 3052 (CH arom.), 2914, 2865 (CH aliph.), 1709, 1695 (2C=O), 1593 (C=N), 1371, 1154 (SO₂). ¹H-NMR (DMSO-d₆, ppm) δ: 2.96 (s, 6H, N(CH₃)₂), 3.11 (d, 2H, J = 6.59 Hz, CH₂), 4.55 (t, 1H, J = 6.88 Hz, CH), 6.72 (d, 2H, J = 8.61 Hz, CHₐrom.), 7.52 (s, 2H, SO₂NH₂), 7.56 (d, 2H, J = 8.99 Hz, CHₐrom.), 7.74 (d, 2H, J = 9.01 Hz, CHₐrom.), 7.96 (d, 2H, J = 8.70 Hz, CHₐrom.), 8.15 (s, 1H, N=CH), 10.75 (s, 1H, OH). ¹³C-NMR
(DMSO-\textit{d}_6, \text{ppm}) \delta: 36.74 (\text{CH}_2), 39.76 (N(\text{CH}_3)_2), 42.45 (\text{CH}), 111.53, 121.08, 126.41, 128.80, 137.90, 143.91, 151.94 161.04 (\text{CH}_\text{arom.}), 158.14 (N=\text{CH}), 171.65 (N-\text{C}≡\text{N}), 173.34 (\text{C}=\text{O}), 173.86 (\text{C}=\text{O}). \text{Anal. Calcd. For } C_{20}H_{21}N_5O_5S_2 (475.54): \text{C}, 50.51; \text{H}, 4.45; \text{N}, 14.73. \text{Found: C, 50.63; H, 4.49; N, 14.86.}

\textbf{X-ray crystallography}

Suitable crystals for X-ray single crystal diffraction were selected, coated in perfluoropolyether oil, and mounted on MiTeGen sample holders. Diffraction data of the sample were collected on a Nonius Kappa three circle diffractometer utilizing mirror monochromated MoK\textalpha radiation ($\lambda = 0.71073 \text{ Å}$) from a rotating anode tube run at 50 V and 30 mA. The diffractometer is equipped with a Bruker ApexII area detector and an open flow \textit{N}_2 Cryoflex II (Bruker) device. Measurements were performed at 100 K. For data reduction, the Bruker Apex2 software suite (Bruker AXS), was used. Using \textbf{Olex2} (Dolomanov et al., 2009), the structure was solved with the \textbf{ShelXS-97} (Sheldrick, 2008) structure solution program using direct methods solution method. The model was refined with \textbf{XL} (Sheldrick, 2008) using Least Squares minimization. All non-hydrogen atom positions were located from the Fourier maps and refined anisotropically. Hydrogen atom positions were calculated using a riding model in geometric positions and refined isotropically.

Cambridge Structural Database (CSD) number: CCDC 1004668.

Crystal Data: C_{10}H_{11}N_3O_5S_2, M_r = 285.34, triclinic, P-1, a = 9.8121(4) \text{ Å}, b = 10.2076(5) \text{ Å}, c = 24.6210(10) \text{ Å}, \alpha = 83.992(2)^\circ, \beta = 82.035(2)^\circ, \gamma = 77.674(2)^\circ, V = 2378.71(18) \text{ Å}^3, T = 100 \text{ K}, Z = 8, Z' = 4, \mu (\text{MoK}\textalpha) = 0.451, 21120 reflections measured, 9859 unique (R_int = 0.0337) which were used in all calculations. The final wR_2 was 0.2419 (all data) and R_1 was 0.0747 (I\geq2\sigma(I)).
Antibacterial activity

Pure compounds were dissolved in sufficient volume of dimethylsulfoxide (DMSO) to make a final concentration of 20 mM. Bacterial strains (*S. aureus* NCTC 8325, *S. aureus* HG001, *S. aureus* MA12, *S. aureus* RN1, *S. aureus* Xen29, *S. epidermidis* RP62A, *S. epidermidis* 195, *S. epidermidis* 047, *E. faecalis* JH212, *E. faecium* 6413, *E. coli* 536, *P. aeruginosa*, *Y. pestis* KUMA, and *Y. pseudotuberculosis* 252 01A) were cultivated overnight at 37 °C (30 °C for *Yersinia*) in Luria-Bertani medium (per liter: 5 g NaCl, 5 g yeast extract, 10 g tryptone) in a shaking incubator.

On the next day, the overnight culture was diluted 1:100 in Müller-Hinton broth (23 g per Liter) and again incubated until the cells reached the exponential growth phase. Approximately, 1x10⁵ cells/mL were incubated with various concentrations of the compounds (40, 20, 10, 5, 2.5, 1.25, 0.625, and 0.3125 μM) at 37°C for 18 h (30°C for 48 h for *Yersinia*) to make a final volume of 200 μL in a 96-well plate. The final concentration of DMSO was 0.8% in each well.

After incubation, the optical density of the cultures was determined at 550 nm wavelength using an ELISA microplate reader (MuiltisKan Ascent, Thermo Fisher Scientific) with respect to the control without bacteria. The lowest concentration of a tested compound, where no bacterial growth is detectable, was determined as minimum inhibitory concentration (MIC). From substances whose MIC is less than 20 μM, the overnight cultures from the wells where no bacterial growth was detected were plated on LB agar plates and incubated again overnight. The compound concentration, at which no growth of the bacteria was detectable, was determined as the minimum bactericidal concentration (MBC).

Inhibition of biofilm formation

Quantitative biofilm of *S. epidermidis* RP62A (ATCC 32984) measurement was done in a microtiter assay. Bacteria were grown overnight in Trypticase Soy Broth / 0.25% glucose (Becton Dickinson). 100 μL of a 1:200 dilution of the overnight culture, with fresh medium, was transferred...
to 96-well tissue culture plates (Greiner, Nürtingen, Germany) added to 100 μL of a serial dilution of the test compounds in medium. Each compound concentration was measured in five replicates. The DMSO concentration in all wells was 0.8%.

Following overnight incubation at 37°C, the optical density at 550 nm (OD$_{600}$) of the bacteria was measured and the cultures were poured out. The plates were washed three times with phosphate-buffered saline and the remaining bacteria were fixed by air drying at 60 °C. After staining with 0.4% crystal violet solution, the optical density of the adherent biofilm was determined at 490 nm. Values $>$0.120 at compound concentrations, with no effect on the bacterial growth in culture, were regarded as biofilm positive.
ACKNOWLEDGEMENTS

We thank Elena Katzowitsch and Tobias Ölschläger (Institute for Molecular Infection Biology, University of Würzburg) for the antibacterial screening, which was funded by the Deutsche Forschungsgemeinschaft (SFB 630, Z1). We also thank the Institute of Inorganic Chemistry, University of Würzburg, for performing the X-ray measurement.

The authors declare that they have no conflicts of interest.
REFERENCES

Scheme 1: Synthesis of compounds 3a-c, 4a-c and 5a-c.

Reagents and conditions: (i) R-NCS / EtOH / TEA / reflux 24 h. (ii) ClCH$_2$COOH / AcOH / anhydrous CH$_3$COONa / reflux 24 hr. (iii) Diethylbromomalonate / AcOH / anhydrous CH$_3$COONa / reflux 24 h. (iv) Maleic anhydride / AcOH / reflux 24 h.
Scheme 2: Synthesis of compounds 9a,b, 10a,b and 11a,b.

Reagents and conditions: (i) CSCl₂ / H₂O / HCl / stirring RT / 2 h. (ii) NH₂NH₂·H₂O / isopropanol / stirring RT / 2 h. (iii) Ar-CHO / MeOH / reflux 5 h. (iv) ClCH₂COOH / AcOH / anhydrous CH₃COONa / reflux 24 hr. (v) Diethylbromomalonate / AcOH / anhydrous CH₃COONa / reflux 24 h. (vi) Maleic anhydride / AcOH / reflux 24 h.
Figure 1: Molecular structure of compound 3a as determined by X-ray single crystal diffraction: a) molecule and naming scheme and b) asymmetric unit with hydrogen bonds. Element (colour): Carbon (grey), oxygen (red), nitrogen (blue), sulfur (yellow), hydrogen (light grey). Atomic displacement parameters are drawn at 50% probability.
Table 1: Antibacterial activity of the tested compounds 4a and 4c

<table>
<thead>
<tr>
<th>Tested bacterial strain</th>
<th>Compound 4a</th>
<th>Compound 4c</th>
<th>Gentamycin</th>
<th>Tetracycline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC* (µM)</td>
<td>MBC* (µM)</td>
<td>MIC (µM)</td>
<td>MBC (µM)</td>
</tr>
<tr>
<td>S. aureus 8325</td>
<td>10</td>
<td>>40</td>
<td>5</td>
<td>>40</td>
</tr>
<tr>
<td>S. aureus HG001</td>
<td>10</td>
<td>>40</td>
<td>5</td>
<td>>40</td>
</tr>
<tr>
<td>S. aureus MA12</td>
<td>10</td>
<td>>40</td>
<td>5</td>
<td>>40</td>
</tr>
<tr>
<td>S. aureus RN1</td>
<td>40</td>
<td>>40</td>
<td>20</td>
<td>>40</td>
</tr>
<tr>
<td>S. aureus Xen29</td>
<td>10</td>
<td>>40</td>
<td>5</td>
<td>>40</td>
</tr>
<tr>
<td>S. epidermidis RP62A</td>
<td>5</td>
<td>>40</td>
<td>5</td>
<td>>40</td>
</tr>
<tr>
<td>S. epidermidis 195</td>
<td>10</td>
<td>>40</td>
<td>10</td>
<td>>40</td>
</tr>
<tr>
<td>S. epidermidis 047</td>
<td>5</td>
<td>>40</td>
<td>2.5</td>
<td>>40</td>
</tr>
<tr>
<td>E. faecalis JH212</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>E. faecium 6413</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>E. coli 536</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>Y. pestis KUMA</td>
<td>10</td>
<td>>40</td>
<td>5</td>
<td>>40</td>
</tr>
<tr>
<td>Y. pseudotuberculosis 252 01A</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
</tr>
</tbody>
</table>

* MIC: Minimal Inhibitory Concentration
** MBC: Minimal Bactericidal Concentration
*** NT: Not tested