Strontium isotope evidence of early Funnel Beaker Culture movement of cattle

Kurt J. Gron a,⁎, Janet Montgomery a, Poul Otto Nielsen b, Geoff M. Nowell c, Joanne L. Peterkin c, Lasse Sørensen b, Peter Rowley-Conwy a

a Department of Archaeology, Durham University, South Road, Durham DH1 3LE, UK
b The National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen K, Denmark
c Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK

⁎ Corresponding author.
E-mail address: k.j.gron@durham.ac.uk (K.J. Gron).

1. Introduction and background

Little is known about animal husbandry in the first five–hundred years of Scandinavia’s Neolithic (Funnel Beaker Culture, Early Neolithic I, c. 4000–3500 cal BC). Any new understanding of practices is desirable as the character of early farming has the strong potential to inform current knowledge of agricultural origins in the region and the role of domestic animal species in human subsistence economies. Information concerning the movement of livestock may also permit interpretations to be made concerning the interplay between husbandry, land-use, and society.

It is increasingly apparent that the movement of livestock across landscapes was a characteristic practice of northern European prehistoric societies (Sjögren and Price, 2012; Towers et al., 2010; Viner et al., 2010). Previous research has shown that by the middle Neolithic (c. 3300–2400 cal BC) cattle (Bos taurus) were circulating in central Sweden (Sjögren and Price, 2012), but the antiquity of this practice in the region is unclear. The purposes for movement may have been, and probably were, multifaceted and unlikely to be solely related to practical concerns. Therefore, it may not be possible to determine the precise purpose or purposes of such movement.

Early Neolithic faunal assemblages from southern Scandinavia are not abundant. They usually consist of limited materials from transitional shell middens, material in poor or highly fragmentary condition, and are only in some cases dominated by domestic species (Andersen, 1991; Bratlund, 1993; Gron, 2013; Hallgren, 2008; Johansen, 2006; Koch, 1998; Skaarup, 1973). Therefore, it is often problematic to apply traditional zooarchaeological methods in order to understand animal husbandry practices because it is only really possible to construct a cattle mortality profile from one ENI site, Almhov, and those data possibly do not represent a residential breeding population (Gron et al., 2015). Given the inaccessibility of comparative contemporaneous zooarchaeological data, opportunities are limited regarding methodological approaches to understanding cattle husbandry.

In this context, we ask a very simple question using strontium isotopes in cattle tooth enamel: Is there evidence for movement of cattle in Scandinavia’s earliest Neolithic? Given the relatively homogenous, yet well-established baseline strontium isotope ratios across the region (Frei and Frei, 2011; Frei and Price, 2012; Price et al., 2012a, 2012b, 2015), we expect that local transhumance may not be visible. Nonetheless, given the slight, yet consistent, variation across the landscape, the potential for long-distance movement and the complete lack of any information in this regard from the earliest Neolithic in the region, such an approach is appropriate.

2. Materials and methods

Two sites were selected for sampling: Almhov, Sweden, and Havnelev, Denmark (Fig. 1). These sites have yielded two of the largest domestic species-dominated early Neolithic faunal assemblages from
In contrast to Almhov, the farming settlement at Havnelev was excavated numerous times: 1922, 1933, and 1936 by the National Museum of Denmark, and again in 1973 (Mathiassen, 1940; Nielsen, 1994). The 1922 excavation was of a shallow but very rich pit yielding the remains of predominantly domestic animals which were dated through the associated finds of Svaleklint-type (or Type B) Funnel Beaker ceramics, for which the settlement is the type-site. The 1933 excavations took place in a depression 120 m to the east of the pit dug in 1922. The hollow was oval in shape and measured c. 15 by 10 m, reaching a depth of 1 m from the top of the subsoil. From this campaign, again the overwhelmingly predominant ceramic was of Svaleklint-type. The excavation in 1936 took place 60 m to the west of the 1922 excavation. It produced a more mixed find material that also contained pottery from the ENIII (c. 3500–3300 cal BC). In 1973 the precise location of the two major excavations in 1922 and 1933 was established and four smaller pits were excavated. While confidently dated to the period between c. 3800–3500 cal BC using ceramics, absolute dating of finds from the 1922 and 1933 excavations has proven problematic due to very poor organic collagen preservation, and despite numerous efforts, no AMS radiocarbon dates have previously been obtained. As a last attempt, two mandible fragments from domestic cattle were submitted to the ChronoCentre at Queen’s University Belfast for AMS dating. One had insufficiently preserved collagen, but the other, from the 1922 excavations (UBA-30023), was 4978 ± 37 radiocarbon years old (2σ range, 3925–3659 cal BC), and in complete agreement with the dates assigned by the associated ceramics.

Table 1

<table>
<thead>
<tr>
<th>Site</th>
<th>Sample number</th>
<th>Species</th>
<th>Element</th>
<th>Side</th>
<th>Grant Wear Stage</th>
<th>87Sr/86Sr</th>
<th>Cusp sampled (all buccal)</th>
<th>Sample location (mm from ERJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almhov</td>
<td>1</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.710170</td>
<td>0.000008</td>
<td>Mesial</td>
</tr>
<tr>
<td>Almhov</td>
<td>2</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx d</td>
<td></td>
<td>0.709028</td>
<td>0.000009</td>
<td>Distal</td>
</tr>
<tr>
<td>Almhov</td>
<td>3</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx b</td>
<td></td>
<td>0.710060</td>
<td>0.000015</td>
<td>Distal</td>
</tr>
<tr>
<td>Almhov</td>
<td>4</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.708771</td>
<td>0.000008</td>
<td>Mesial</td>
</tr>
<tr>
<td>Almhov</td>
<td>5</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx e</td>
<td></td>
<td>0.710854</td>
<td>0.000008</td>
<td>Distal</td>
</tr>
<tr>
<td>Almhov</td>
<td>16</td>
<td>Bos taurus</td>
<td>M1</td>
<td>sn c</td>
<td></td>
<td>0.709609</td>
<td>0.000008</td>
<td>Mesial</td>
</tr>
<tr>
<td>Havnelev</td>
<td>18</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.710868</td>
<td>0.000013</td>
<td>Mesial</td>
</tr>
<tr>
<td>Havnelev</td>
<td>19</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.711291</td>
<td>0.000007</td>
<td>Mesial</td>
</tr>
<tr>
<td>Havnelev</td>
<td>20</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx b</td>
<td></td>
<td>0.711339</td>
<td>0.000010</td>
<td>Mesial</td>
</tr>
<tr>
<td>Havnelev</td>
<td>21</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.710099</td>
<td>0.000019</td>
<td>Distal</td>
</tr>
<tr>
<td>Havnelev</td>
<td>22</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx g</td>
<td></td>
<td>0.711417</td>
<td>0.000017</td>
<td>Distal</td>
</tr>
<tr>
<td>Havnelev</td>
<td>23</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.712103</td>
<td>0.000012</td>
<td>Mesial</td>
</tr>
<tr>
<td>Havnelev</td>
<td>24</td>
<td>Bos taurus</td>
<td>M1</td>
<td>sn g</td>
<td></td>
<td>0.711308</td>
<td>0.000015</td>
<td>Mesial</td>
</tr>
<tr>
<td>Repeat !16</td>
<td>16</td>
<td>Bos taurus</td>
<td>M1</td>
<td>sn c</td>
<td></td>
<td>0.709620</td>
<td>0.000007</td>
<td>Mesial</td>
</tr>
<tr>
<td>Repeat #2</td>
<td>21</td>
<td>Bos taurus</td>
<td>M1</td>
<td>dx f</td>
<td></td>
<td>0.710906</td>
<td>0.000018</td>
<td>Distal</td>
</tr>
</tbody>
</table>
the same animal. Secondly, Sample 24 was the only Havnelev tooth that was not loose, and was extracted from a mandible also containing an M2. As such it cannot be from the same animal as Sample 19 on the grounds that identical teeth from two sides of a mandible will not have dissimilar wear stages, and that the M1 cannot be less worn than an M2. Therefore, only Sample 20 could potentially be from the same animal as either Sample 19 or 24, which, if true, only reduces the number of individuals by one.

Buccal lobes of the molars were first cleaned through abrasion using a high speed diamond-tipped dental drill. Damage to individual teeth necessitated the sampling of a mixture of mesial and distal cusps in order to ensure a consistent zone of sampling. Samples were taken from the same general overlapping zone of the tooth (Table 1) in order to ensure similar developmental timing in the period of strontium incorporation (Brown et al., 1960; Soana et al., 1997). In this case, the sampled region near the center of each tooth crown starts to mineralize in M1s in the period at, or around birth (Brown et al., 1960; Soana et al., 1997; Towers et al., 2014). Strontium was separated from the tooth enamel matrix and measured at the Durham Geochemistry Centre (DGC) at the Durham University Earth Sciences Department. The enamel samples were prepared for strontium isotope analysis using column chemistry methods outlined in Charlier et al. (2006). Samples were heated on a hot plate overnight in 500 μl of 3 N HNO₃. Once dissolved the samples were loaded onto cleaned and preconditioned columns containing 60 μl of Eichrom Sr specific resin. 2 × 250 μl 3 N HNO₃ was passed through the column to elute the waste, followed by 2 × 200 μl MQ H₂O to elute the strontium fraction. This was then acidified to yield a solution of ~3% HNO₃ for subsequent analysis. Following the preparation, the size of the ⁸⁶Sr beam was tested for each sample to assess the strontium concentrations. From this analysis, a dilution factor could be calculated for each sample and each was diluted to yield a beam size of approximately 20 V ⁸⁸Sr to match the intensity of the international Isotopic Reference Material (IRM), NBS987. Strontium isotopes were analyzed by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) using a Neptune MC-ICP-MS at the DGC. Samples were introduced into the Neptune using an ESI PFA-50 nebulizer and a micro-cyclonic spray chamber. Instrumental mass bias was corrected for using an ⁸⁸Sr/⁸⁶Sr ratio of 8.375209 (the reciprocal of the ⁸⁶Sr/⁸⁷Sr ratio of 0.1194) and an exponential law. Corrections for isobaric interferences from Rb and Kr on ⁸⁷Sr and ⁸⁶Sr were performed using ⁸⁵Rb and ⁸⁸Kr as the monitor masses. In all cases the intensity of monitor mass was < 0.1 mV and isobaric interference corrections therefore insignificant. Samples were analyzed in one session during which the average ⁸⁷Sr/⁸⁶Sr ratio and reproducibility for the IRM NBS987 during this study was 0.710250 ± 0.000013 (2σ; n = 11).

3. Results and discussion

Thirteen strontium isotope ratios were obtained from domestic cattle molars from Havnelev (N = 7) and Almhov (N = 6) (Table 1). Additionally, two repeated measurements show variation within the reproducibility for reference standards, and are not considered further. The ⁸⁷Sr/⁸⁶Sr ratios range from 0.70903 to 0.71210. The Almhov ratios are lower than those from Havnelev with no overlap although several ratios are very similar between the sites. In context with the most recent baselines for the region (Price et al., 2015; Frei and Frei, 2011; Frei and Price, 2012), all ratios fall within the usual range of variation for eastern Denmark or southern Sweden (Fig. 2). Despite some overlap between eastern and western Denmark (Frei and Price, 2012), there is no reason to identify any of the cattle as originating further afield in the west when they are also consistent with origins in the east. However, this cannot be conclusively ruled out.

As one moves southwest through Scania and across the Øresund into Zealand (Fig. 1), there is a trend of decreasing strontium isotope ratios in modern baseline animal samples (Price et al., 2015). However, the cattle data from Almhov and Havnelev do not conform to this modern geographical trend insofar as the Almhov ratios are lower. Previous analyses of the samples from Almhov were interpreted as being local to southern Scandinavia broadly (Gron et al., 2015), but on the finer regional scale, more can be said. The range of variation at each site implies the presence of individuals that were not all from the same place, while at the same time indicating that some individuals had similar origins (Fig. 2). Ultimately, the current baseline resolution is insufficient to resolve possible places of origin further but this dataset suggests that at both sites movement of cattle at least locally to each site may be indicated.

Two cattle are of particular interest (Samples #2 and #23), as they may offer some further information regarding movement. Firstly, one ratio from Almhov (Sample #2, 0.707903), is lower than the available baseline ratios for Scania (Price et al., 2012a, 2012b, 2015). Importantly, it is lower than the accepted seawater strontium isotope ratio of 0.7092 (McArthur et al., 2001; Fig. 2) indicating that this ratio is unlikely to be
References

Andersen, S.H., 1991. Norsmed: “a kickandrew” with late Mesolithic and early Neo-

Bratlund, B., 1993. The bone remains of mammals and birds from the Bjørnholm shell-

Brown, W.A.B., Christoffersen, P.V., Massler, M., Weiss, M.B., 1960. Postnatal tooth devel-

Frei, K.M., Frei, R., 2011. The geographic distribution of strontium isotopes in Danish sur-

Grant, A., 1982. The use of tooth wear as a guide to the age of domestic ungulates. In: Wilson, B., Grigson, C., Payne, S. (Eds.), Ageing and Sexing Animal Bones From Archae-

Johansen, K.L., 2006. Settlement and land use at the Mesolithic-Neolithic transition in south-

sonality using O13C and S18O profiles within first molar enamel. Archaeomery 56 Suppl. 1, 208–236.

Wilhelmsen, H., Ahlström, T., 2015. Iron age migration on the island of Oland: apportion-
ment of strontium by means of Bayesian mixing analysis. J. Archaeol. Sci. 64, 30–45.