A Linear Kernel for Finding Square Roots of Almost Planar Graphs

Petr A. Golovach1, Dieter Kratsch2, Daniël Paulusma3, and Anthony Stewart3

1 Department of Informatics, University of Bergen,
PB 7803, 5020 Bergen, Norway
petr.golovach@ii.uib.no
2 Laboratoire d’Informatique Théorique et Appliquée, Université de Lorraine,
57045 Metz Cedex 01, France
dieter.kratsch@univ-lorraine.fr
3 School of Engineering and Computing Sciences, Durham University,
Durham DH1 3LE, United Kingdom
{daniel.paulusma,a.g.stewart}@durham.ac.uk

Abstract

A graph H is a square root of a graph G if G can be obtained from H by the addition of edges between any two vertices in H that are of distance 2 from each other. The SQUARE ROOT problem is that of deciding whether a given graph admits a square root. We consider this problem for planar graphs in the context of the “distance from triviality” framework. For an integer k, a planar+kV graph is a graph that can be made planar by the removal of at most k vertices. We prove that a generalization of SQUARE ROOT, in which some edges are prescribed to be either in or out of any solution, has a kernel of size $O(k)$ for planar+kV graphs, when parameterized by k. Our result is based on a new edge reduction rule which, as we shall also show, has a wider applicability for the SQUARE ROOT problem.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases planar graphs, square roots, linear kernel

1 Introduction

Squares and square roots are well-known concepts in graph theory with a long history. The square $G = H^2$ of a graph $H = (V_H, E_H)$ is the graph with vertex set $V_G = V_H$, such that any two distinct vertices $u, v \in V_H$ are adjacent in G if and only if u and v are of distance at most 2 in H. A graph H is a square root of G if $G = H^2$. It is easy to check that there exist graphs with no square root, graphs with a unique square root as well as graphs with many square roots. The corresponding recognition problem, which asks whether a given graph admits a square root, is called the SQUARE ROOT problem. Motwani and Sudan [21] showed that SQUARE ROOT is NP-complete.

1.1 Existing Results

In 1967, Mukhopadhyay [22] characterized the graphs that have a square root. In line with the aforementioned NP-completeness result of Motwani and Sudan, which appeared in 1994,
this characterization does not lead to a polynomial-time algorithm for \textit{Square Root}. Later
results focussed on the following two recognition questions (\mathcal{G} denotes some fixed graph
class):

(1) How hard is it to recognize squares of graphs of \mathcal{G}?
(2) How hard is it to recognize graphs of \mathcal{G} that have a square root?

Note that the second question corresponds to the \textit{Square Root} problem restricted to
graphs in \mathcal{G}, whereas the first question is the same as asking whether a given graph has a
square root in \mathcal{G}.

Ross and Harary [24] characterized squares of a tree and proved that if a connected graph
has a tree square root, then this root is unique up to isomorphism. Lin and Skiena [18] gave
a linear-time algorithm for recognizing squares of trees; they also proved that \textit{Square Root}
can be solved in linear time for planar graphs. Le and Tuy [16] generalized the above results
for trees [18, 24] to block graphs. Nestoridis and Thilikos [23] proved that \textit{Square Root}
is not only polynomial-time solvable for the class of planar graphs but for any non-trivial
minor-closed graph class, that is, for any graph class that does not contain all graphs and
that is closed under taking vertex deletions, edge deletions and edge contractions.

Lau [12] gave a polynomial-time algorithm for recognizing squares of bipartite graphs;
note that \textit{Square Root} is trivial for bipartite graphs, and even for K_4-free graphs, or
equivalently, graphs of clique number at most 3, as square roots of K_4-free graphs must have
maximum degree at most 2. Milanic, Oversberg and Schaudt [19] proved that line graphs
can only have bipartite graphs as a square root. The same authors also gave a linear-time
algorithm for \textit{Square Root} restricted to line graphs.

Lau and Corneil [13] gave a polynomial-time algorithm for recognizing squares of proper
interval graphs and showed that the problems of recognizing squares of chordal graphs
and squares of split graphs are both \textit{NP}-complete. The same authors also proved that
\textit{Square Root} is \textit{NP}-complete even for chordal graphs. Le and Tuy [17] gave a quadratic-
time algorithm for recognizing squares of strongly chordal split graphs. Le, Oversberg
and Schaudt [14] gave polynomial algorithms for recognizing squares of ptolemaic graphs
and 3-sun-free split graphs. In a more recent paper [15], the same authors extended the
latter result by giving polynomial-time results for recognizing squares of a number of other
subclasses of split graphs. Milanic and Schaudt [20] proved that \textit{Square Root} can be solved
in linear time for trivially perfect graphs and threshold graphs. They posed the complexity of
\textit{Square Root} restricted to split graphs and cographs as open problems. Recently, we proved
that \textit{Square Root} is linear-time solvable for 3-degenerate graphs and for (K_r, P_t)-free
graphs for any two positive integers r and t [8].

Adamaszek and Adamaszek [1] proved that if a graph has a square root of girth at least
6, then this square root is unique up to isomorphism. Farzad, Lau, Le and Tuy [7] showed
that recognizing graphs with a square root of girth at least g is polynomial-time solvable if
$g \geq 6$ and \textit{NP}-complete if $g = 4$. The missing case $g = 5$ was shown to be \textit{NP}-complete by
Farzad and Karimi [6].

In a previous paper [2] we proved that \textit{Square Root} is polynomial-time solvable for
graphs of maximum degree 6. We also considered square roots under the framework of
parameterized complexity [3, 2]. We proved that the following two problems are fixed-
parameter tractable with parameter k: testing whether a connected n-vertex graph with m
edges has a square root with at most $n - 1 + k$ edges and testing whether such a graph has a
square root with at least $m - k$ edges. In particular, the first result implies that the problem
of recognizing squares of tree+ke graphs, that is, graphs that can be modified into trees by
removing at most k edges, is fixed-parameter tractable when parameterized by k.
1.2 Our Focus

We are interested in developing techniques that lead to new polynomial-time or parameterized algorithms for Square Root for special graph classes. In particular, there are currently very few results on the parameterized complexity, which is the main focus of our paper.

The graph classes that we consider fall under the “distance from triviality” framework, introduced by Guo, Hüffner and Niedermeier [10]. For a graph class \(G \) and an integer \(p \) we define four classes of “almost \(G \)” graphs, that is, graphs that are editing distance \(k \) apart from \(G \). To be more precise, the classes \(G + ke \), \(G - ke \), \(G + kv \) and \(G - kv \) consist of all graphs that can be modified into a graph of \(G \) by deleting at most \(k \) edges, adding at most \(k \) edges, deleting at most \(k \) vertices and adding at most \(k \) vertices, respectively. Taking \(k \) as the natural parameter, these graph classes have been well studied from a parameterized point of view for a number of problems. In particular this is true for the vertex coloring problem restricted to (subclasses of) almost perfect graphs (due to the result of Grötschel, Lovász, and Schrijver [9], who proved that vertex coloring is polynomial-time solvable on perfect graphs).

We consider \(G \) to be the class of planar graphs. As planar graphs are closed under taking edge and vertex deletions, classes of planar \(-kv \) graphs and planar \(-ke \) graphs coincide with planar graphs. Hence, we only need to consider planar \(+kv \) graphs and planar \(+ke \) graphs, that is, graphs that can be made planar by at most \(k \) vertex deletions or at most \(k \) edge deletions, respectively.

1.3 Our Results

Our main contribution is showing a linear kernel result for Square Root. In fact, we consider a more general version of Square Root, called Square Root with Labels, that takes as input a graph \(G \) with two subsets \(R \) and \(B \) of prespecified edges: the edges of \(R \) need to be included in a solution (square root) and the edges of \(B \) are forbidden in the solution. We prove that Square Root with Labels has a kernel of size \(O(k) \) for planar \(+kv \) graphs, when parameterized by \(k \). Note that this immediately implies the same result for planar \(+ke \) graphs. Square Root with Labels was introduced in a previous paper [3], but in this paper we introduce a new reduction rule, which we call the edge reduction rule.

The edge reduction rule is used to recognize, in polynomial time, a certain local substructure that graphs with square roots must have. As such, our rule can be added to the list of known and similar polynomial-time reduction rules for recognizing square roots. To give a few examples, the reduction rule of Lin and Skiena [18] is based on recognizing pendant edges and bridges of square roots of planar graphs, whereas the reduction rule of Farzad, Le and Tuy [7] is based on the fact that squares of graphs with large girth can be recognized to have a unique root. In contrast, our edge reduction rule, which is based on detecting so-called recognizable edges whose neighbourhoods have some special property (see Section 3 for a formal description) is tailored for graphs with no unique square root, just as we did in [3]; in fact our new rule, which we explain in detail in Section 4, can be seen as an improved and more powerful variant of the rule used in [3]. For squares with no unique square root, not all the root edges can be recognized in polynomial time. Hence, removing certain local substructures, thereby reducing the graph to a smaller graph, and keeping track of the compulsory edges (the recognized edges) and forbidden edges is the best we can do. However, after the reduction, the connected components of the remaining graph might be dealt with further by exploiting the properties of the graph class under consideration. This is exactly what we do for planar \(+kv \) graphs to obtain the linear kernel in Section 5.

In Section 6 we show, besides giving some directions for future work, that the edge rule
2 Preliminaries

We only consider finite undirected graphs without loops or multiple edges. We refer to the textbook by Diestel [5] for any undefined graph terminology.

We denote the vertex set of a graph G by V_G and the edge set by E_G. The subgraph of G induced by a subset $U \subseteq V_G$ is denoted by $G[U]$. The graph $G - U$ is the graph obtained from G after removing the vertices of U. If $U = \{u\}$, we also write $G - u$. Similarly, we denote the graph obtained from G after deleting an edge e by $G - e$. A vertex u is a cut vertex of a connected graph G with at least two vertices if $G - u$ is disconnected. An inclusion-maximal subgraph of G that has no cut vertices is called a block. A bridge of a connected graph G is an edge e such that $G - e$ is disconnected.

In the remainder of this section let G be a graph. We say that G is planar-k if G can be made planar by removing at most k vertices. The distance $\text{dist}_G(u, v)$ between a pair of vertices u and v of G is the number of edges of a shortest path between them. The diameter $\text{diam}(G)$ of G is the maximum distance between any two vertices of G. The distance between a vertex $u \in V_G$ and a subset $X \subseteq V_G$ is denoted by $\text{dist}_G(u, X) = \min\{\text{dist}_G(u, v) \mid v \in X\}$. The distance between two subsets X and Y of V_G is denoted by $\text{dist}_G(X, Y) = \min\{\text{dist}_G(u, v) \mid u \in X, v \in Y\}$. Whenever we speak about the distance between a vertex set X and a subgraph H of G, we mean the distance between X and V_H.

The open neighbourhood of a vertex $u \in V_G$ is defined as $N_G(u) = \{v \mid uv \in E_G\}$ and its closed neighbourhood is defined as $N_G[u] = N_G(u) \cup \{u\}$. For $X \subseteq V_G$, let $N_G(X) = \bigcup_{u \in X} N_G(u) \setminus X$. Two (adjacent) vertices u, v are said to be true twins if $N_G[u] = N_G[v]$. The degree of a vertex $u \in V_G$ is defined as $d_G(u) = |N_G(u)|$. The maximum degree of G is $\Delta(G) = \max\{d_G(v) \mid v \in V_G\}$. A vertex of degree 1 is said to be a pendant vertex. If v is a pendant vertex, then we say the unique edge incident to u is a pendant edge.

The framework of parameterized complexity allows us to study the computational complexity of a discrete optimization problem in two dimensions. One dimension is the input size n and the other one is a parameter k. We refer to the recent textbook of Cygan et al. [4] for further details and only give the definitions for those notions relevant for our paper here. A parameterized problem is fixed parameter tractable (FPT) if it can be solved in time $f(k) \cdot n^O(1)$ for some computable function f. A kernelization of a parameterized problem Π is a polynomial-time algorithm that maps each instance (x, k) with input x and parameter k to an instance (x', k'), such that i) (x, k) is a yes-instance if and only if (x', k') is a yes-instance of Π, and ii) $|x'| + k'$ is bounded by $f(k)$ for some computable function f. The output (x', k') is called a kernel for Π. The function f is said to be a size of the kernel. It is well known that a decidable parameterized problem is FPT if and only if it has a kernel. A logical next step is then to try to reduce the size of the kernel. We say that (x', k') is a linear kernel if f is linear.

3 Recognizable Edges

In this section we introduce the definition of a recognizable edge, which plays a crucial role in our paper, together with the corresponding notion of a (u, v)-partition. We also prove some important lemmas about this type of edges. See Fig. 1 (i) for an example of a recognizable edge and a corresponding (u, v)-partition (X, Y).

...
Definition 1. An edge uv of a graph G is said to be recognizable if the following four conditions are satisfied:

a) $N_G(u) \cap N_G(v)$ has a partition (X,Y) where $X = \{x_1, \ldots, x_p\}$ and $Y = \{y_1, \ldots, y_q\}$, $p,q \geq 1$, are (disjoint) cliques in G;

b) $x_iy_j \notin E_G$ for $i \in \{1, \ldots, p\}$ and $j \in \{1, \ldots, q\}$;

c) for any $w \in N_G(u) \setminus N_G[v]$, $wy_j \notin E_G$ for $j \in \{1, \ldots, q\}$, and symmetrically, for any $w \in N_G(v) \setminus N_G[u]$, $wx_i \notin E_G$ for $i \in \{1, \ldots, p\}$;

d) for any $w \in N_G(u) \setminus N_G[v]$, there is an $i \in \{1, \ldots, p\}$ such that $wx_i \in E_G$, and symmetrically, for any $w \in N_G(v) \setminus N_G[u]$, there is a $j \in \{1, \ldots, q\}$ such that $wy_j \in E_G$.

We also call such a partition (X,Y) a (u,v)-partition of $N_G(u) \cap N_G(v)$.

Notice that due to c) and d), (X,Y) is an ordered pair defined for an ordered pair (u,v); if $N_G(u) \setminus N_G(v) \neq \emptyset$ or $N_G(v) \setminus N_G(u) \neq \emptyset$ then (Y,X) is not a (u,v)-partition, as condition c) is violated (and in some instances, condition d) as well).

\[\begin{matrix}
\text{Figure 1} \ i) \text{An example of a graph } G \text{ with a recognizable edge } uv \text{ and a corresponding } (u,v)-\text{partition } (X,Y). \ (ii) \text{ A square root of } G. \text{ In this figure, the edges of the square root are shown by thick lines and the edges of } G \text{ not belonging to the square root are shown by dashed lines. Edges which may or may not belong to the square root are shown by neither thick nor dashed lines.}
\end{matrix}\]

In the next lemma we give a necessary condition of an edge of a square root H of a graph G to be recognizable in G. In particular, this lemma implies that any non-pendant bridge of H is a recognizable edge of G.

Lemma 2. Let H be a square root of a graph G. Let uv be an edge of H that is not pendant and such that any cycle in H containing uv has length at least 7. Then uv is a recognizable edge of G and $(N_H(u) \setminus \{v\}, N_H(v) \setminus \{u\})$ is a (u,v)-partition in G.

Proof. Let H be a square root of a graph G and let uv be an edge of H such that uv is not a pendant edge of H and any cycle in H containing uv has length at least 7. Let $X = \{x_1, \ldots, x_p\} = N_H(u) \setminus \{v\}$ and $Y = \{y_1, \ldots, y_q\} = N_H(v) \setminus \{u\}$. Because uv is not a pendant edge and any cycle in H that contains uv has length at least 7, it follows that $X \neq \emptyset$, $Y \neq \emptyset$ and $X \cap Y = \emptyset$. We show that (X,Y) is a (u,v)-partition of $N_G(u) \cap N_G(v)$ in G by proving that conditions a)–d) of Definition 1 are fulfilled.

First we prove a). Let $z \in N_G(u) \cap N_G(v)$. We will show that $z \in X \cup Y$. If $uz \in E_H$ then $z \in X$, and if $vz \in E_H$ then $z \in Y$. Suppose that $z \notin X$ and $z \notin Y$. Since $uz \in E_G$, there is a vertex $w \in V_G$ such that $uw, wz \in E_H$. Since $vz \notin E_H$ it follows that $w \neq v$. It follows due to symmetry that there exists $w' \in V_G$ such that $vw', w'z \in E_H$ and $w' \neq u$. Then either $ww'vuw'$ is a cycle in H if $w = w'$, otherwise, $zwvuw'$ is a cycle of H. In both cases we have a contradiction since any cycle in H containing uv has length at least 7. This proves that $z \in X \cup Y$ and therefore, $N_G(u) \cap N_G(v) \subseteq X \cup Y$. Since $vx_i \in E_G$ and $uy_j \in E_G$ for all
If \mathbf{w} is a non-leaf edge of some graph G, then w is a linear kernel for finding square roots of almost planar graphs. To prove b), assume that there are $i \in \{1, \ldots, p\}$ and $j \in \{1, \ldots, q\}$ such that $x_i y_j \in E_G$. Because H has no cycle of length 4 containing uv, $x_i y_j \notin E_H$. Hence, there is $z \in V_H$ such that $x_i z, z y_j \in E_H$. Because H has no cycles of length 3 containing w, we find that $z \notin \{u, v\}$. We conclude that $x_i w y_j z$ is a cycle of length 5 in H that contains w; a contradiction.

To prove c), it suffices to show that for any $w \in N_G(u) \setminus N_G[v]$, $w y_j \notin E_G$ for $j \in \{1, \ldots, q\}$, as the second part is symmetric. To obtain a contradiction, assume that there are vertices $w \in N_G(u) \setminus N_G[v]$ and y_j for some $j \in \{1, \ldots, q\}$ such that $w y_j \in E_G$. By a), (X, Y) is a partition of $N_G(u) \cap N_G(v)$. Hence, $w \notin X$ and $w \notin Y$. Because $w \notin X$ and $w \in N_G(u)$, there is $x \in V_G$ such that $ux, xw \in E_H$. As $ux \in E_H$, we have $x \in X$. If $w y_j \in E_H$, then the cycle $x w y_j w u$ containing w has length 5; a contradiction. Hence, $w y_j \notin E_H$. Because $w y_j \in E_G$, there is a vertex $z \in V_H$ such that $w z, y_j z \in E_H$. Since $w \in N_G(u) \setminus N_G[v]$, we have $w \notin \{u, v\}$. If $x = z$, then $w y_j x w$ is a cycle of length 4 containing w, a contradiction. If $x \neq z$, then $w y_j w z w u$ is a cycle of length 6 containing w, another contradiction.

To prove d) we consider some $w \in N_G(u) \setminus N_G[v]$. We note that since $X \subseteq N_G(u) \cap N_G(v)$, $w \notin X$ and thus $w \notin E_H$. Since $w u \in E_G$ by definition, there must be some $x \in V_G$ such that $u x, w x \in E_H$. Because w is not adjacent to v, we find that $x \neq v$. Since $u x \in E_H$ and $X = N_H(u) \setminus \{v\}$, this means that $x \in X$. The second condition in d) follows by symmetry.

The following corollary follows immediately from Lemma 2.

Corollary 3. Let H be a square root of a graph with no recognizable edges. Then every non-pendant edge of H lies on a cycle of length at most 6.

In Lemma 4 we show that recognizable edges in a graph G can be used to identify some edges of a square root of G and also some edges that are not included in any square root of G; see Fig. 1 (ii) for an illustration of this lemma.

Lemma 4. Let G be a graph with a square root H. Additionally let $w u$ be a recognizable edge of G with a (u, v)-partition (X, Y) where $X = \{x_1, \ldots, x_p\}$ and $Y = \{y_1, \ldots, y_q\}$. Then:

i) $w u \in E_H$;

ii) for every $w \in N_G(u) \setminus N_G[v]$, $w u \notin E_H$, and for every $w \in N_G(v) \setminus N_G[u]$, $w v \notin E_H$.

iii) if u, v are true twins in G, then either $u x_1, \ldots, u x_p \in E_H$, $v y_1, \ldots, v y_q \in E_H$ and $u y_j, w y_q \notin E_H$, $v x_1, \ldots, v x_p \notin E_H$ or $u x_1, \ldots, u x_p \notin E_H$, $v y_1, \ldots, v y_q \notin E_H$ and $u y_j, w y_q \in E_H$, $v x_1, \ldots, v x_p \in E_H$.

iv) if u, v are not true twins in G, then $u x_1, \ldots, u x_p \in E_H$, $v y_1, \ldots, v y_q \in E_H$ and $u y_j, w y_q \notin E_H$, $v x_1, \ldots, v x_p \notin E_H$.

Proof. The proof uses conditions a)–d) of Definition 1.

To prove i), suppose that $w u \notin E_H$. Then there is a vertex $z \in N_G(u) \cap N_G(v)$ such that $z u, z v \in E_H$. Assume without loss of generality that $z \in X$. Because of b), $z y_1 \notin E_G$, which implies, together with $z v \in E_H$, that $v y_1 \notin E_H$. Because $v y_1 \in E_G$, this means that there is a vertex w with $w v, w y_1 \in E_H$. Because we assume $w u \notin E_H$, we observe that $w \neq u$. By b), $w \notin X$ and, therefore, $w \in N_G(v) \setminus N_G(u)$. As $z v, w v \in E_H$, we obtain $w z \in E_G$. However, as $z \in X$, this contradicts c). We conclude that $w u \in E_H$.
To prove ii), it suffices to consider the case in which $w \in N_G(u) \setminus N_G[v]$, as the other case is symmetric. If $wu \in E_H$, then because $wv \in E_H$, we have $uw \in E_G$ contradicting $w \notin N_G[v]$.

We now prove iii) and iv). First suppose that there exist vertices x_i and x_j (with possibly $i = j$) for some $i, j \in \{1, \ldots, p\}$ such that $x_i u, x_j v \in E_H$. Then, as $x_i y_1, x_j y_1 \notin E_G$ by b), we find that $y_1 u, y_1 v \notin E_H$. As $y_1 u \in E_G$, the fact that $y_1 u \notin E_H$ means that there exists a vertex $w \in V_H \setminus \{u, v\}$ such that $wu, wy_1 \in E_H$. As $y_1 v \notin E_H$, we find that $w \neq v$, so $w \in V_H \setminus \{u, v\}$. As $x_i u, uw \in E_H$, we find that $x_i w \in E_G$, consequently $w \notin Y$ due to b). Because $wy_1 \in E_H$ we obtain $w \notin X$, again due to b). Hence, $w \notin X \cup Y = N_G(u) \cap N_G(v)$. Therefore, as $uw \in E_G$ and $w \neq v$, we have $w \in N_G(u) \setminus N_G[v]$, but as $y_1 w \in E_G$ this contradicts c). Hence, this situation cannot occur.

Suppose that there a vertex x_i for some $i \in \{1, \ldots, p\}$ such that $x_i u, x_i v \notin E_H$. Then, as $x_i u, x_i v \in E_G$, there exists a vertex $w \in V_H \setminus \{u, v\}$, such that $wu, wx_i \in E_H$. By b), $w \notin Y$. As $wu \in E_H$ due to statement i) and $wu, wx_i \in E_H$, we find that $wu \in E_G$. Hence, as $w \notin Y$, we obtain $w \in X$. As $x_i u \in E_G \setminus E_H$ and $x_i v \notin E_H$, there is a vertex $z \in V_H \setminus \{u, v\}$ such that $zu, zv \in E_H$. As $wu \in E_H$ due to statement i), this implies that $zv \in E_H$. Hence, $z \in X \cup Y$. As $x_i z \in E_H$ we find that $z \notin Y$ due to b). Consequently, $z \in X$. This means that we have vertices $w, z \in X$ (possibly $w = z$) and edges $zu, uw \in E_H$. However, we already proved above that this is not possible.

We obtain that either $ux_1, \ldots, ux_p \in E_H$ and $vx_1, \ldots, vx_p \notin E_H$, or $ux_1, \ldots, ux_p \notin E_H$ and $vx_1, \ldots, vx_p \in E_H$. Symmetrically, either $uy_1, \ldots, uy_q \in E_H$ and $vy_1, \ldots, vy_q \notin E_H$, or $uy_1, \ldots, uy_q \notin E_H$ and $vy_1, \ldots, vy_q \in E_H$. By b), it cannot happen that $ux_1, uy_1 \in E_H$ or $vx_1, vy_1 \in E_H$. Hence, either $ux_1, \ldots, uy_q \in E_H$, $vy_1, \ldots, vy_q \notin E_H$, or $ux_1, \ldots, ux_p \notin E_H$ or $vx_1, \ldots, vx_p \notin E_H$. By d), we obtain that $w \in N_G(u) \setminus N_G[v]$. Then $wz \notin E_H$, as otherwise our assumption that $wz \in E_H$ will imply that $w \notin N_G(v)$, which is not possible. Since $wz \in E_G \setminus E_H$, there exists a vertex $z \in V_H$ such that $zw, zv \in E_H$. Because $x_i u \notin E_H$, we find that $z \neq u$, and because $w \notin N_G(v)$, we find that $z \neq v$. Because $zv, x_i v \in E_H$, we obtain $zv \in E_G$. As $w \notin N_G(v)$ and $vx_j \in E_H$ for all $j \in \{1, \ldots, p\}$, we have $wx_j \notin E_H$ for all $j \in \{1, \ldots, p\}$. Hence, as $zw \in E_H$, we find that $z \notin X$. As $zv \in E_H$, we find that $z \notin Y$ due to b). Hence, $z \notin X \cup Y = N_G(u) \cap N_G(v)$. As $zv \in E_G$, this implies that $z \in N_G(v) \setminus N_G[u]$ (recall that $z \neq u$). Because $zv \in E_G$, this is in contradiction with c).

Remark 1. If the vertices u and v of the recognizable edge of the square G in Lemma 4 are true twins, then by statement iii) of this lemma and the fact that the vertices u and v are interchangeable, G has at least two isomorphic square roots: one root containing $ux_1, \ldots, ux_p, vy_1, \ldots, vy_q$ and excluding $uy_1, \ldots, uy_q, vx_1, \ldots, vx_p$, and another one containing $ux_1, \ldots, ux_p, vy_1, \ldots, vy_q$ and excluding $uy_1, \ldots, uy_q, vx_1, \ldots, vx_p$.

4 The Edge Reduction Rule

In this section we present our edge reduction rule. As mentioned in Section 1.3, we solve a more general problem than SQUARE ROOT. Before discussing the edge reduction rule, we first formally define this problem.
Square Root with Labels

Input: a graph G and two sets of edges $R, B \subseteq E_G$.

Question: is there a graph H with $H^2 = G$, $R \subseteq E_H$ and $B \cap E_H = \emptyset$?

Note that Square Root is indeed a special case of Square Root with Labels: choose $R = B = \emptyset$.

We say that a graph H is a solution for an instance (G, R, B) of Square Root with Labels if H satisfies the following three conditions: (i) $H^2 = G$; (ii) $R \subseteq E_H$; and (iii) $B \cap E_H = \emptyset$.

We use Lemmas 2 and 4 to preprocess instances of Square Root with Labels. Our edge reduction algorithm takes as input an instance (G, R, B) of Square Root with Labels and either returns an equivalent instance with no recognizable edges or answers no.

Edge Reduction

1. Find a recognizable edge uv together with corresponding (u, v)-partition (X, Y), $X = \{x_1, \ldots, x_p\}$ and $Y = \{y_1, \ldots, y_q\}$. If such an edge uv does not exist, then return the obtained instance of Square Root with Labels and stop.

2. If $uv \in B$ then return no and stop. Otherwise let $B_1 = \{wu | w \in N_G(u) \setminus N_G[v]\} \cup \{vw | w \in N_G(v) \setminus N_G[u]\}$. If $R \cap B_1 \neq \emptyset$, then return no and stop.

3. If u and v are not true twins then set $R_2 = \{ux_1, \ldots, ux_p\} \cup \{vy_1, \ldots, vy_q\}$ and $B_2 = \{uy_1, \ldots, uy_q\} \cup \{vx_1, \ldots, vx_p\}$. If $R_2 \cap B \neq \emptyset$ or $B_2 \cap R \neq \emptyset$, then return no and stop.

4. If u and v are true twins then do as follows:
 a. If $\{(uy_1, \ldots, uy_q) \cup \{vx_1, \ldots, vx_p\}\} \cap R \neq \emptyset$ or $\{(ux_1, \ldots, ux_p) \cup \{vy_1, \ldots, vy_q\}\} \cap B \neq \emptyset$ then set $R_2 = \{uy_1, \ldots, uy_q\} \cup \{vx_1, \ldots, vx_p\}$ and $B_2 = \{ux_1, \ldots, ux_p\} \cup \{vy_1, \ldots, vy_q\}$. If $R_2 \cap B \neq \emptyset$ or $B_2 \cap R \neq \emptyset$, then return no and stop.
 b. If $\{(uy_1, \ldots, uy_q) \cup \{vx_1, \ldots, vx_p\}\} \cap R = \emptyset$ and $\{(ux_1, \ldots, ux_p) \cup \{vy_1, \ldots, vy_q\}\} \cap B = \emptyset$ then set $R_2 = \{ux_1, \ldots, ux_p\} \cup \{vy_1, \ldots, vy_q\}$ and $B_2 = \{uy_1, \ldots, uy_q\} \cup \{vx_1, \ldots, vx_p\}$. (Note that $R_2 \cap B = \emptyset$ and $B_2 \cap R = \emptyset$.)

5. Delete the edge uv and the edges of B_1 from G, set $R := (R \setminus \{w\}) \cup R_2$ and $B := (B \setminus B_1) \cup B_2$, and return to Step 1.

Lemma 5. For an instance (G, R, B) of Square Root with Labels where G has n vertices and m edges, Edge Reduction in time $O(n^2m^2)$ either correctly answers no or returns an equivalent instance $(G', \tilde{R}', \tilde{B}')$ with the following property: for any square root H of G', every edge of H is either a pendant edge of H or is included in a cycle of length at most 6 in H. Moreover, $(G', \tilde{R}', \tilde{B}')$ has a solution H if and only if (G, R, B) has a solution that can be obtained from H by restoring all recognizable edges.

Proof. It suffices to consider one iteration of the algorithm to prove its correctness. If we stop at Step 1 and return the obtained instance of Minimum Square Root with Labels, then by Lemma 2, for any square root H of G', every non-pendant edge of H is included in a cycle of length at most 6 in H.

To show the correctness of Step 2, we note that by Lemma 4 i), uv is included in any square root and the edges of B_1 are not included in any square root. Hence, if what we do in Step 2 is not consistent with R and B, there is no square root of G that includes the edges of R and excludes the edges of B, thus returning output no is correct.

To show the correctness of Step 3, suppose u and v are not true twins. Then by Lemma 4 iv) it follows that $ux_1, \ldots, ux_p \in E_H, vy_1, \ldots, vy_q \in E_H, uy_1, \ldots, uy_q \notin E_H$ and $vx_1, \ldots, vx_p \notin E_H$ for any square root H. Hence, we must define R_2 and B_2 according to...
this lemma. If afterwards we find that $R_2 \cap B \neq \emptyset$ or $B_2 \cap R \neq \emptyset$, then R_2 or B_2 is not consistent with R or B, respectively, and thus, returning no if this case happens is correct.

To show the correctness of Step 4, suppose that u and v are true twins. Then by Lemma 4 iv) we have two options. First, if $((uv_1, \ldots, uy_q) \cup \{vx_1, \ldots, vx_p\}) \cap R \neq \emptyset$ or $((ux_1, \ldots, ux_p) \cup \{vy_1, \ldots, vy_q\}) \cap B \neq \emptyset$, then we are forced to go for the option as defined in Step 4(a). If afterwards $R_2 \cap B \neq \emptyset$ or $B_2 \cap R \neq \emptyset$, then we still need to return no as in Step 3. Second, if $((uv_1, \ldots, uy_q) \cup \{vx_1, \ldots, vx_p\}) \cap R = \emptyset$ and $((ux_1, \ldots, ux_p) \cup \{vy_1, \ldots, vy_q\}) \cap B = \emptyset$, then we may set without loss of generality (cf. Remark 1) that $R_2 = \{ux_1, \ldots, ux_p\} \cup \{vy_1, \ldots, vy_q\}$ and $B_2 = \{uy_1, \ldots, uy_q\} \cup \{vx_1, \ldots, vx_p\}$. Note that in this case $R_2 \cap B = \emptyset$ and $B_2 \cap R = \emptyset$.

Finally, to show the correctness of Step 5, let G' be the graph obtained from G after deleting the edge uv and the edges of B_1. Let $R' = (R \setminus \{uv\}) \cup R_2$ and $B' = (B \setminus B_1) \cup B_2$. Then the instances (G, R, B) and (G', R', B') are equivalent: a graph H is readily seen to be a solution for (G, R, B) if and only if $H - uv$ is a solution for (G', R', B'). This completes the correctness proof of our algorithm.

It remains to evaluate the running time. We can find a recognizable edge uv together with the corresponding (u, v)-partition (X, Y) in time $O(mn^2)$. This can be seen as follows. For each edge uv, we find $Z = N_G(u) \cap N_G(v)$. Then we check conditions a) and b) of Definition 1, that is, we check whether Z is the union of two disjoint cliques with no edges between them. Finally, we check conditions c) and d) of Definition 1. For a given uv, this can all be done in time $O(n^3)$. As we need to check at most m edges, one iteration takes time $O(mn^3)$. As the total number of iterations is at most m, the whole algorithm runs in time $O(n^2m^2)$.

5 The Linear Kernel

For proving that Square Root with Labels restricted to planar+kv graphs has a linear kernel when parameterized by k, we will use the following result of Harary, Karp and Tutte as a lemma.

Lemma 6 ([11]). A graph H has a planar square if and only if

i) every vertex $v \in V_H$ has degree at most 3,

ii) every block of H with more than four vertices is a cycle of even length, and

iii) H has no three mutually adjacent cut vertices.

We need the following additional terminology. A block is trivial if it has exactly one vertex; note that this vertex must have degree 0. A block is small if it has exactly two vertices and big otherwise. We say that a block is pendant if it is a small block with a vertex of degree 1.

We need two more structural lemmas. We first show the effect of applying our Edge Reduction Rule on the number of vertices in a connected component of a planar graph.

Lemma 7. Let G be a planar graph with a square root. If G has no recognizable edges, then every connected component of G has at most 12 vertices.

Proof. Let G be a planar square with no recognizable edges. We may assume without loss of generality that G is connected and $|V_G| \geq 2$. Let H be a square root of G. Recall that H is a connected spanning subgraph of G. Hence, it suffices to prove that H has at most 12 vertices.
First suppose that H does not have a big block, in which case every edge of H is a bridge. As G has no recognizable edges, Corollary 3 implies that every block of H is pendant. By Lemma 6, every vertex of H degree at most 3. Hence, H has at most four vertices.

Now suppose that H has a big block F. If F contains no cut vertices of H, then $H = F$ has at most six vertices due to Corollary 3 and Lemma 6. Assume that F contains a cut vertex v of H. Lemma 6 tells us that $d_H(v) \leq 3$; therefore v is a vertex of exactly two blocks, namely F and some other block S. Because F is big, v has two neighbours in F. Hence, v can only have one neighbour in S, thus S is small. As G has no recognizable edges, Corollary 3 implies that S is a pendant block. Hence, we find that $|V_G| \leq 2|V_F|$ (with equality if and only if each vertex of F is a cut vertex).

If F has at least seven vertices, then it follows from Lemma 6 that F is a cycle of even length at least 8, which is not possible due to Corollary 3. We conclude that $|V_F| \leq 6$ and find that $|V_G| = |V_H| \leq 2|V_F| \leq 12$.

We now prove our second structural lemma.

Lemma 8. Let G be a planar+kv graph with no recognizable edges, such that every connected component of G has at least 13 vertices. If G has a square root, then $|V_G| \leq 137k$.

Proof. Let H be a square root of G. By Lemma 7, G cannot have any planar connected components (as these would have at most 12 vertices). Hence, every connected component of G is non-planar.

Since G is planar+kv, there exists a subset $X \subseteq V_G$ of size at most k such that $G - X$ is planar. Let $F = H - X$. Note that F is a spanning subgraph of $G - X$ and that F^2 is (spanning) subgraph of $G - X$; hence F^2 is planar. Let Y be the set that consists of all those vertices of F that are a neighbour of X in H, that is $Y = N_H(X) \cap V_F$. Since every
connected component of $G - X$ is non-planar, every connected component of F contains at least one vertex of Y. Let A be the set that consists of all edges between X and Y in H, that is, $A = \{uv \in E(H) \mid u \in X, v \in Y\}$. See Figure 2 for an example.

Consider a vertex $v \in X$. By Kuratowski’s Theorem, the (planar) graph $G - X$ has no clique of size 5. Since $N_H(v) \cap (V_G \setminus X)$ is a clique in $G - X$, we find that $|N_H(v) \cap (V_G \setminus X)| \leq 4$. Hence, $|Y| \leq 4|X| \leq 4k$.

We now prove three claims about the structure of blocks of F.

Claim A. If R is a block of F that is not a pendant block of H, then V_R is at distance at most 1 from Y in F.

We prove Claim A as follows. Let R be a block of F that is not a pendant block of H. To obtain a contradiction, assume that V_R is at distance at least 2 from Y in F. Let u be a vertex of R such that $\text{dist}_F(u, Y) = \min\{\text{dist}_F(u, v) \mid v \in V_R\}$, so u is a cut vertex of F that is of distance at least 2 from Y in F. Note that R is not a trivial block of F, since all trivial blocks are isolated vertices of F that are vertices of Y.

First suppose that R is a small block of F and let v be the second vertex of R. Then the edge uv is a bridge of F. Since R is not pendant, it follows from Corollary 3 that uv is in a cycle of length C at most 6 in H. Observe that C must contain at least two edges of A, which implies that u or v is at distance at most 1 from Y. This is a contradiction.

Now suppose that R is a big block of G. Let v be the neighbour of u in a shortest path between u and Y in F. By Lemma 6, u has degree at most 3 in F. As R is big, u has at least two neighbours in F. Hence, uv is a bridge of F. As v has at least two neighbours in F as well, uv is not a pendant edge of H. Then it follows from Corollary 3 that uv is in a cycle C of length at most 6 in H. Observe that C must contain at least two edges of A and at least one edge uv of R for some vertex $w \neq u$ in R. Hence, w is at distance at most 1 from Y, which is a contradiction. This completes the proof of Claim A.

By Lemma 6, every vertex of F has degree at most 3 in F. Hence the following holds:

Claim B. For every $u \in Y$, F has at most three big blocks at distance at most 1 from u.

Let Z be the set of vertices of F at distance at most 3 from X in H.

Claim C. If R is a block of F with $V_R \setminus Z \neq \emptyset$, then $|V_R| \leq 6$.

We prove Claim C as follows. Suppose R is a block of F with $V_R \setminus Z \neq \emptyset$. For contradiction, assume that $|V_R| \geq 7$. Then, by Lemma 6, R is a cycle of F of even size. As $V_R \setminus Z \neq \emptyset$ and R is connected, there exists an edge uw of F with $u \notin Z$. By Corollary 3, we find that uw is in a cycle C of H of length at most 6. Since u is at distance at least 4 from X in H, we find that C contains no vertex of X and therefore, C is a cycle of F. Then $R = C$ must hold, which is a contradiction as $|V_R| \geq 7 > 6 \geq |V_C|$. This completes the proof of Claim C.

We will now show that the diameter of F is bounded. We start with proving the following claim.

Claim D. Every vertex of every block R of F that is non-pendent in H is at distance at most 5 from X in H. Moreover,

1) if R has a vertex at distance at least 4 from X in H, then R is a big block,
2) R has at most three vertices at distance at least 4 and at most one vertex at distance 5 from X in H.

We prove Claim D as follows. Let R be a block of F that is non-pendent in H. Claim A tells us that V_R is at distance at most 1 from Y in F.

If R is a small block, then every vertex of R is at distance at most 2 from Y. Hence, every vertex of R is at distance at most 3 from X in H and the claim holds for R.

Let R be a big block. If R has at most four vertices, then the vertices of R are at distance at most 3 from Y in F and at most one vertex of R is at distance exactly 3. Hence, the vertices of R are at distance at most 4 from X in H and at most one vertex of R is at distance exactly 4. Assume that $|V_R| > 4$. Then either $V_R \subseteq Z$, that is, all the vertices are at distance at most 3 from X in H, or, by Lemma 6 and Claim C, we find that R has at most six vertices. As $|V_R| > 4$, we find that R is a cycle on six vertices by Lemma 6. Hence, in the latter case every vertex of R is at distance at most 4 from Y, that is, at distance at most 5 from X in H. Moreover, at most three vertices are at distance at least 4 and at most one vertex is at distance 5 from X in H as R is a cycle. This completes the proof of Claim D.

By combining Claim B with the fact that $|Y| \leq 4k$, we find that F has at most $12k$ big blocks at distance at most 1 from Y. By Claims A and D, this implies that H has at most $36k$ vertices of non-pendant blocks at distance at least 4 from X in H and at most $12k$ vertices at distance at least 5 from X in H. Let v be a vertex H of degree 1 in H. If v is at distance at least 5 from X, then v is adjacent to a vertex u of a non-pendant block and u is at distance at least 4 from X in H. Notice that v is a unique vertex of degree 1 adjacent to u, because by Claim D, u is in a big block and $d_F(u) \leq 3$ by Lemma 6. Since H has at most $36k$ vertices of non-pendant blocks at distance at least 4 from X in H, the total number of vertices of degree 1 at distance at least 5 from X in H is at most $36k$. Taking into account that there are at most $12k$ vertices at distance at least 5 from X in H in non-pendant blocks, we see that there are at most $48k$ vertices of H at distance at least 5 from X and all other vertices in F are at distance at most 4 from X. Using the facts that $|Y| \leq 4k$ and that $d_F(v) \leq 3$ for $v \in V_F$ by Lemma 6, we observe that H has at most $k + 4k + 12k + 24k + 48k = 89k$ vertices at distance at most 4 from X. It then follows that $|V_G| = |V_H| \leq 48k + 89k = 137k$. ▶

We are now ready to prove our main result.

Theorem 9. Square Root with Labels has a kernel of size $O(k)$ for planar+kv graphs when parameterized by k.

Proof. Let (G, R, B) be an instance of Square Root with Labels. First we apply Edge Reduction, which takes polynomial time due to Lemma 5. By the same lemma we either solve the problem in polynomial time or obtain an equivalent instance (G', R', B') with the following property: for any square root H of G', every edge of H is either a pendant edge of H or is included in a cycle of length at most 6 in H. In the latter case we apply the following reduction rule exhaustively, which takes polynomial time as well.

Component Reduction. If G' has a connected component F with $|V_F| \leq 12$, then use brute force to solve Square Root with Labels for $(F, R \cap V_F, B \cap V_F)$. If this yields a no-answer, then return no and stop. Otherwise, return $(G' - V_F, R' \setminus V_F, B' \setminus V_F)$ or if $G' = F$, return yes and stop.

It is readily seen that this rule either solves the problem correctly or returns an equivalent instance. Assume we obtain an instance (G'', R'', B''). Our reduction rules do not increase the deletion distance, that is, G'' is a planar+kv graph. Then by Lemma 8, if G'' has more than $137k$ vertices then G'', and thus G, has no square root. Hence, if $|V_{G''}| > 137k$, we have a no-instance, in which case we return a no-answer and stop. Otherwise, we return the kernel (G'', R'', B''). ▶
6 Conclusions

We proved a linear kernel for Square Root with Labels, which generalizes the Square Root problem, for planar+kv graphs using a new edge reduction rule. It would be interesting to research whether our edge reduction rule can be used to obtain other results for Square Root. We could prove that this rule can be used to show the known result [2] that Square Root is polynomial-time solvable for graphs of maximum degree at most 6. We conclude our paper by showing that there exists at least one other application.

The average degree of a graph G is $\text{ad}(G) = \frac{1}{|V_G|} \sum_{v \in V_G} d_G(v) = \frac{2|E_G|}{|V_G|}$. Then the maximum average degree of G is defined as $\text{mad}(G) = \max\{\text{ad}(H) | H \text{ is a subgraph of } G\}$.

We use our rule Edge Reduction to prove the following result (proof omitted).

▶ Theorem 10. Square Root can be solved in time $O(n^4)$ for n-vertex graphs G with $\text{mad}(G) < \frac{46}{11}$.

We pose the problem as to whether Theorem 10 can be strengthened to hold for graphs of higher maximum average degree as an open problem.

References