Title

A Risk-Based Regulatory Framework for Health IT: Recommendations of the FDASIA Working Group

Sarah P. Slight, MPharm, PhD, PGDip1,2
David W. Bates, MD, MSc2,4

Author affiliations:
1 School of Medicine, Pharmacy and Health, The University of Durham, UK;
2 Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA;
3 Harvard Medical School, 250 Longwood Ave, Boston, MA, USA;
4 Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, USA.

Corresponding author:
Dr. David Westfall Bates,
The Center for Patient Safety Research and Practice,
Division of General Internal Medicine,
Brigham and Women’s Hospital,
Boston, MA, USA
Tel: +1 617 732 5650
Fax: +1 617 732 7072
E-mail: dbates@partners.org
Word count: Abstract (175), Body (1719)

Key words: Healthcare information technology, regulation, patient safety, policy
Abstract

The Secretary of Health and Human Services acting through the Food and Drug Administration (FDA), and in collaboration with the Federal Communications Commission (FCC) and Office of the National Coordinator for Health IT (ONC) was tasked with delivering a report on an appropriate, risk-based regulatory framework for health information technology. An expert stakeholder group was established under the auspices of the Health Information Technology (IT) Policy Committee to help provide input into the development of this framework. The three agencies were asked to take into account this input, and to use it to help Health and Human Services put forward a risk-based regulatory framework, including how healthcare IT systems could be stratified in terms of risk, and recommendations about how the regulatory requirements currently in place should be adapted. In this paper, we summarize the public deliberations and final public report of the expert stakeholder group, and conclude with key suggestions intended to address the charge to recommend the features of a risk-based regulatory framework that promote innovation, protect patient safety, and avoid regulatory duplication.
Perspective

On the 9th of July 2012, President Barack Obama signed into law the Food and Drug Administration Safety and Innovation Act (FDASIA). This legislation enhanced the FDA’s powers to protect and promote patients’ interests by expediting the development and review of new medical devices. The Secretary of Health and Human Services acting through the FDA, and in collaboration with the Federal Communications Commission (FCC) and Office of the National Coordinator for Health IT (ONC), was tasked with delivering a report that contained “a proposed strategy and recommendations on an appropriate, risk-based regulatory framework pertaining to health information technology, including mobile medical applications, that promotes innovation, protects patient safety, and avoids regulatory duplication”. Recognizing the importance of stakeholder involvement, the FDA set up the public-private FDASIA working group under the ONC’s Health IT Policy Committee. The purpose of this group, which was subject to Federal Advisory Committee regulations, was to gather expert input from a wide variety of relevant stakeholders including patients, consumers, healthcare providers and IT vendors, to help guide the FDA on the development of such a framework. The group was keen to avoid any regulatory duplication, as a number of different organisations are already responsible for assuring the safety and effectiveness of medical devices (FDA), and testing and certifying of products (ONC). With publication of this Health IT report now imminent, we reflect on the key recommendations of the FDASIA working group that were made in response to this charge as well as identify the actions necessary to make the risk-based regulatory framework work without stifling innovation.

What Health IT should be subject to a risk-based regulatory framework?
The FDASIA working group described a taxonomy for considering the parameters of Health IT and consequently what Health IT products should be considered for a risk-based regulatory framework. A number of guiding principles were intended to be applied to these Health IT products, including a set of defining characteristics such as product categories and intended use. If the intended use of the Health IT product was to inform or change decision making about initiating, discontinuing, modifying, or avoiding care interventions or personal health management, then it was considered within the scope of the framework. Electronic Health Records (EHRs), intelligent intravenous (IV) pumps, closed-loop insulin pump with implanted continuous glucose monitors, and a mHealth Nutrition app were all given as examples of Health IT products that could possibly be subject to a risk-based regulatory framework, whereas disease registries and claims processing software were considered out-of-scope (Table 1).

How can Health IT be stratified in terms of risk?

The FDASIA working group developed a new framework enumerating various important factors that could influence the potential risk of patient harm (combination of the probability of occurrence of harm and the severity of that harm). These included, for example, the purpose of the software product; intended user(s); severity of injury; likelihood of hazardous situation arising; and complexity of implementation and upgrades (see Table 2). The framework did not weight or “calculate” any specific risk score for a given product, but rather served to highlight the key considerations when evaluating the use of a new system. The matrix characterized the relative risk (i.e., “lower risk”, “medium risk”, or “higher risk”) of certain conditions of each risk factor and served as directional guidance only. Software
may be considered complex in terms of implementation, upgrades and maintenance, and thus considered harder to classify. This was somewhat understandable given: (i) the greater effort and expertise required to implement this software, (ii) their variable context of use, and (iii) the existence of numerous interfaces to other systems. Furthermore, it is difficult to determine when a product is in final form, and balance the risk that arises from installation and implementation issues with that inherent at the product inception. For example, the “build” and configuration of an EHRs was considered complex and assigned a ‘higher risk’ (e.g., greater number of people exposed and number of processes involved) compared to that of a closed-loop insulin pump with implanted continuous glucose monitor, which was assigned a ‘medium risk’. Automated decision-making, which is synonymous with intelligent intravenous (IV) pumps, was also considered complex and assigned a ‘higher risk’ compared to that of a mHealth Nutrition app, which provided information only and was assigned a ‘lower risk’.

What current regulatory frameworks are in place?

The Center for Devices and Radiological Health of the FDA is responsible for assuring the safety, effectiveness and proper labeling of medical devices and radiation-emitting products marketed in the U.S. A product will be regulated as a medical device if it meets the definition set out in the Federal Food, Drug & Cosmetic Act (see Box 1). A medical device can be assigned to one of three classes i.e., Class I, II, and III, depending on its intended use and its indications for use.(2) Regulatory control increases from Class I to Class III. For example, approximately 74% of Class I devices (which pose a low risk of illness or injury) are exempt from the premarket notification process,(2) whereas most Class
III devices (which are considered to pose a greater risk) require premarket approval. Although the FDA’s regulatory requirements can help ensure the safety and effectiveness of medical devices, the FDASIA working group highlighted how such regulations were geared especially, but not exclusively, to physical devices. It was felt that this could stifle the pace and diffusion of innovation, or otherwise discourage manufacturers from introducing new software to the market. The group therefore suggested that Health IT should not be subject to FDA premarket notification, except for: (i) medical device accessories, (ii) certain forms of high risk clinical decision support, such as Computer Aided Diagnostics, and (iii) higher risk software, where the intended use elevates the aggregated risk. The group also recommended that the FDA define the scope of regulations for each of these suggested exemptions listed above. A robust post-market surveillance mechanism, with post-implementation testing to track adverse events and near misses, was also recommended.

The ONC Certification Program set the standards, implementation specifications and certification criteria that EHRs must include, at a minimum, to support the achievement of Meaningful Use.(4) To qualify for the financial incentives offered under the Medicare and Medicaid EHR Incentive Programs,(5) health care professionals and hospitals must both adopt Certified EHRs and demonstrate meaningful use of this technology. A number of organizations are involved in testing and certifying EHR products, including the Accredited Testing Laboratories and Authorized Certification Bodies, respectively. The FDASIA working group commented on how certifying specific test behaviors can limit innovation, favoring existing software with defined “best practice” features. The group suggested providing more flexibility around compliance to accommodate new Health IT developments, and greater transparency and predictability of candidate standards that are being considered for possible adoption. It was also recommended that the ONC, FDA and
FCC should avoid any regulatory duplication, as it is possible for the same medical device to be brought independently before all agencies.

Are there better ways to assure that innovation is permitted to bloom, local and national accountability encouraged, and safety promoted?

The FDASIA working group was clear that any new regulatory framework for Health IT should promote innovation. Transparency of products and results was proposed as one way in which innovation could be stimulated. The availability of comparative information about a particular product, for example, could drive choice and help healthcare organizations improve their performance. The working group highlighted how national standards for quality processes should also be measurable and transparent. Standards and specifications that support interoperability could help bring more proposed solutions to market; industry participation in the development of such standards was encouraged. The working group also recommended more local Health IT configuration and integration, as well as more control and accountability for outcomes of use. This included the ability to iteratively develop, design, test and implement changes to meet users’ needs. Furthermore, the Institute of Medicine (IOM) report Health IT and Patient Safety: Building Safer Systems for Better Care recommended the reporting of health IT-related adverse events by vendors and users to identify and rectify vulnerabilities that threaten safety. This was echoed by the working group who emphasized the importance of non-punitive reporting of safety issues and the aggregation of these data at a national level to help drive outcome improvements.
More research is needed to explore the root cause of Health IT system-related errors, and the huge challenges that surround the secure exchange of confidential clinical information among disparate systems and healthcare settings. Addressing key gaps in EHR functionality is essential for all healthcare providers, and broader access to safety and system performance data is needed to facilitate timely improvements. In response to this Health and Human Services report, the health informatics community may be encouraged to develop and adopt best practices in the safe design, deployment and use of EHRs, as well as share information about obstacles encountered during Health IT implementations. Although much has been accomplished to date, considerable additional progress is needed to track adverse events and near misses for certain health IT functionality, and create a healthcare environment where patient safety is protected. Health IT developers and vendors may also be required to list products that represent at least some risk and encouraged to report serious health IT related safety events. The working group viewed the sharing of information, knowledge and lessons learned as fundamental to promoting safety and innovation.

Future directions

The next step will be for Health and Human Services to release its report for public commentary. This report is of great significance to the health informatics community as it paves the way for possible risk-based regulation of Health IT in the coming years and for reducing barriers to innovation. The HIT industry also has a great deal of interest in the recommendations. Too much regulation could stifle innovation, while if little oversight is put in place, safety issues may remain uncorrected. While HIT is likely highly beneficial in the aggregate with respect to safety, numerous unintended consequences have been identified
of HIT,(7) and it does not necessarily result in desired benefits.

It remains to be seen which, if any, of the recommendations the federal agencies will take on board and the likely impact such a report will have on the future Health IT agenda. We await the next developments with interest.

Contributorship Statement: SPS and DWB conceived and wrote this perspective piece. They both act as guarantors.

Funding Statement: This perspective piece received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing Interests Statement: Dr. Bates served as chair of the FDASIA Workgroup, and is a member of the HIT Policy Committee. The viewpoints in this paper do not necessarily represent those of the FDASIA Workgroup or the HIT Policy Committee. Dr. Slight has no competing interests to declare.

References:

3. Office of the National Coordinator for Health Information Technology (ONC) website. *Draft FSASIA Committee Report*. Available from:

Table 1. Examples of Health IT products that may or may not be possibly subject to the Risk-based Regulatory Framework (3)

<table>
<thead>
<tr>
<th>Possibly subject to Risk based Regulatory Framework</th>
<th>Likely not to be subject to the Risk-based Regulatory Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>• EHRs (installed, SaaS)</td>
<td>• Claims processing software</td>
</tr>
<tr>
<td>• Hospital information systems-of-systems</td>
<td>• Health benefit eligibility software</td>
</tr>
<tr>
<td>• Decision support algorithms</td>
<td>• Practice management / Scheduling / Inventory management software</td>
</tr>
<tr>
<td>• Visualization tools for anatomic, tissue images, medical imaging and waveforms</td>
<td>• General purpose communication applications (e.g., e-mail, paging) used by health professionals</td>
</tr>
<tr>
<td>• Health information exchange software</td>
<td>• Software using historical claims data to predict future utilization / cost of care</td>
</tr>
<tr>
<td>• Electronic/robotic patient care assistants</td>
<td>• Cost effectiveness analytic software</td>
</tr>
<tr>
<td>• Templating software tools for digital image surgical planning</td>
<td>• Electronic guideline distribution</td>
</tr>
<tr>
<td></td>
<td>• Disease registries</td>
</tr>
</tbody>
</table>
Table 2. Framework for Risk and Innovation Dimensions of Assessing Risk by Patient Harm (3)

<table>
<thead>
<tr>
<th>Purpose of software product</th>
<th>Lower risk</th>
<th>Medium Risk</th>
<th>Higher Risk/More Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makes recommendations to user</td>
<td>Automated decision making (e.g., intelligent IV pump, AED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intended user(s)</td>
<td>Targeted user(s) are knowledgeable and can safely use product</td>
<td>Provides diagnosis or treatment advice directly to knowledgeable user</td>
<td></td>
</tr>
<tr>
<td>Severity of injury</td>
<td>Potential for non-life threatening adverse event</td>
<td>Life-threatening potential</td>
<td></td>
</tr>
<tr>
<td>Likelihood of hazardous situation arising</td>
<td>Unpredictable, but hazardous situation arises > 1:10K pt-yrs and < once a year</td>
<td>Common (arises once per year)</td>
<td></td>
</tr>
<tr>
<td>Transparency of software operations, data and included content providers</td>
<td>Software operates transparently and output is understandable by software expert</td>
<td>“Black box”</td>
<td></td>
</tr>
<tr>
<td>Ability to mitigate harmful conditions</td>
<td>Human intermediary knowledgeable and empowered to intervene to prevent harm</td>
<td>Human intermediary may be (but not routinely) involved</td>
<td></td>
</tr>
<tr>
<td>Complexity of software and its maintenance</td>
<td>Medium complexity. Testing procedures exist that reliably assess patient-safety risk profile of product.</td>
<td>Complexity of data collection and “transformation” involved in producing output is significant. Difficult to test reliably for all safety risks</td>
<td></td>
</tr>
<tr>
<td>Complexity of implementation and upgrades</td>
<td>The “build” and configuration of the software is moderately complex, but “guard rails” significantly limit types of changes that might induce life-threatening risk.</td>
<td>The “build” and configuration of the software is complex and can introduce substantial changes that can induce serious risk. Limited or no “guard rails.”</td>
<td></td>
</tr>
<tr>
<td>Complexity of training and use</td>
<td>The software system output is clear and easy to interpret. Minimal training needed.</td>
<td>Moderate complexity. Less than 2 hr of training required.</td>
<td></td>
</tr>
<tr>
<td>Use as part of more comprehensive software/hardware system</td>
<td>Software interacts with 1-3 other systems with mature, well described interfaces.</td>
<td>Almost always used as part of a larger software system AND output is subject to interpretation or can be configured in multiple ways whose mis-interpretation may induce harm (e.g., DDI thresholds)</td>
<td></td>
</tr>
<tr>
<td>Network connectivity, standards, security</td>
<td>Wireless spectrum that is licensed by rule with interference protection and low risk of harmful interference.</td>
<td>Wireless unlicensed spectrum, which has no protection from harmful interference.</td>
<td></td>
</tr>
</tbody>
</table>
Box 1. Definition of a Medical Device

A device is:

"an instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is:

- recognized in the official National Formulary, or the United States Pharmacopoeia, or any supplement to them,

- intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or

- intended to affect the structure or any function of the body of man or other animals, and which does not achieve its primary intended purposes through chemical action within or on the body of man or other animals and which is not dependent upon being metabolized for the achievement of any of its primary intended purposes."(8)