Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.


Durham Research Online
You are in:

Transversals of subtree hypergraphs and the source location problem in digraphs.

Heuvel van den, J. and Johnson, M. (2008) 'Transversals of subtree hypergraphs and the source location problem in digraphs.', Networks., 51 (2). pp. 113-119.

Abstract

A hypergraph $H=(V,E)$ is a subtree hypergraph if there is a tree~$T$ on~$V$ such that each hyperedge of~$E$ induces a subtree of~$T$. Since the number of edges of a subtree hypergraph can be exponential in $n=|V|$, one can not always expect to be able to find a minimum size transversal in time polynomial in~$n$. In this paper, we show that if it is possible to decide if a set of vertices $W\subseteq V$ is a transversal in time~$S(n)$ (\,where $n=|V|$\,), then it is possible to find a minimum size transversal in~$O(n^3\,S(n))$. This result provides a polynomial algorithm for the Source Location Problem\,: a set of $(k,l)$-sources for a digraph $D=(V,A)$ is a subset~$S$ of~$V$ such that for any $v\in V$ there are~$k$ arc-disjoint paths that each join a vertex of~$S$ to~$v$ and~$l$ arc-disjoint paths that each join~$v$ to~$S$. The Source Location Problem is to find a minimum size set of $(k,l)$-sources. We show that this is a case of finding a transversal of a subtree hypergraph, and that in this case~$S(n)$ is polynomial.

Item Type:Article
Additional Information:
Keywords:Graphs, Hypergraphs, Source location, Algorithms.
Full text:Full text not available from this repository.
Publisher Web site:http://dx.doi.org/10.1002/net.20206
Record Created:07 Oct 2008
Last Modified:08 Apr 2009 16:27

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Usage statisticsLook up in GoogleScholar | Find in a UK Library