Skip to main content

Research Repository

Advanced Search

Arabidopsis NAP1 regulates the formation of autophagosomes

Wang, P.; Richardson, C.; Hawes, C.; Hussey, P.J.

Arabidopsis NAP1 regulates the formation of autophagosomes Thumbnail


Authors

P. Wang

C. Richardson

C. Hawes



Abstract

The SCAR/WAVE complex is required for ARP2/3-mediated actin nucleation, and these complexes are highly conserved in plants and animals [1 and 2]. Proteins from the SCAR/WAVE complex have been found to be membrane associated in plants [3]. Using fluorescent protein fusions, we have found that NAP1 [4], a component of the SCAR/WAVE complex, locates to vesicles or puncta that appear upon applied pressure. These NAP1 vesicles can be endoplasmic reticulum (ER)-associated, can co-align with the cytoskeleton, and fuse to each other homotypically. More interestingly, the majority co-localizes with the autophagosome marker ATG8, and anti-NAP1 identifies autophagosomes in immuno-TEM. Macroautophagy (hereafter referred to as autophagy) is enhanced under certain stress conditions such as nitrogen starvation and salt stress. We show that fewer autophagosomes are generated in the NAP1 knockout mutant during starvation stress. The nap1 mutant (and KO mutants of other components of the SCAR/WAVE and ARP2/3 complexes) is more susceptible to nitrogen starvation and is less salt tolerant, indicating defective autophagy. In conclusion, our data show that NAP1 has another function in plant cells, and that is as a regulator of autophagy.

Citation

Wang, P., Richardson, C., Hawes, C., & Hussey, P. (2016). Arabidopsis NAP1 regulates the formation of autophagosomes. Current Biology, 26(15), 2060-2069. https://doi.org/10.1016/j.cub.2016.06.008

Journal Article Type Article
Acceptance Date Jun 6, 2016
Online Publication Date Jul 21, 2016
Publication Date Aug 8, 2016
Deposit Date Jul 22, 2016
Publicly Available Date Mar 29, 2024
Journal Current Biology
Print ISSN 0960-9822
Publisher Cell Press
Peer Reviewed Peer Reviewed
Volume 26
Issue 15
Pages 2060-2069
DOI https://doi.org/10.1016/j.cub.2016.06.008

Files





You might also like



Downloadable Citations