Skip to main content

Research Repository

Advanced Search

Glacial isostatic adjustment associated with the Barents Sea ice sheet: a modelling inter-comparison

Auriac, A.; Whitehouse, P.L.; Bentley, M.J.; Patton, H.; Lloyd, J.M.; Hubbard, A.

Glacial isostatic adjustment associated with the Barents Sea ice sheet: a modelling inter-comparison Thumbnail


Authors

A. Auriac

H. Patton

A. Hubbard



Abstract

The 3D geometrical evolution of the Barents Sea Ice Sheet (BSIS), particularly during its late-glacial retreat phase, remains largely ambiguous due to the paucity of direct marine- and terrestrial-based evidence constraining its horizontal and vertical extent and chronology. One way of validating the numerous BSIS reconstructions previously proposed is to collate and apply them under a wide range of Earth models and to compare prognostic (isostatic) output through time with known relative sea-level (RSL) data. Here we compare six contrasting BSIS load scenarios via a spherical Earth system model and derive a best-fit, χ2 parameter using RSL data from the four main terrestrial regions within the domain: Svalbard, Franz Josef Land, Novaya Zemlya and northern Norway. Poor χ2 values allow two load scenarios to be dismissed, leaving four that agree well with RSL observations. The remaining four scenarios optimally fit the RSL data when combined with Earth models that have an upper mantle viscosity of 0.2–2 × 1021 Pa s, while there is less sensitivity to the lithosphere thickness (ranging from 71 to 120 km) and lower mantle viscosity (spanning 1–50 × 1021 Pa s). GPS observations are also compared with predictions of present-day uplift across the Barents Sea. Key locations where relative sea-level and GPS data would prove critical in constraining future ice-sheet modelling efforts are also identified.

Citation

Auriac, A., Whitehouse, P., Bentley, M., Patton, H., Lloyd, J., & Hubbard, A. (2016). Glacial isostatic adjustment associated with the Barents Sea ice sheet: a modelling inter-comparison. Quaternary Science Reviews, 147, 122-135. https://doi.org/10.1016/j.quascirev.2016.02.011

Journal Article Type Article
Acceptance Date Feb 10, 2016
Online Publication Date Jun 17, 2016
Publication Date Sep 1, 2016
Deposit Date Aug 4, 2016
Publicly Available Date Jun 17, 2017
Journal Quaternary Science Reviews
Print ISSN 0277-3791
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 147
Pages 122-135
DOI https://doi.org/10.1016/j.quascirev.2016.02.011

Files





You might also like



Downloadable Citations