Skip to main content

Research Repository

Advanced Search

Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

Fakher, Sundes; Nejm, Razan; Ayesh, Ahmad; AL-Ghaferi, Amal; Zeze, Dagou; Mabrook, Mohammed

Single-Walled Carbon-Nanotubes-Based Organic Memory Structures Thumbnail


Authors

Sundes Fakher

Razan Nejm

Ahmad Ayesh

Amal AL-Ghaferi

Mohammed Mabrook



Abstract

The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs), metal–insulator–semiconductor (MIS) and thin film transistor (TFT) structures, using poly(methyl methacrylate) (PMMA) as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V) for MIS structures, as well as output and transfer characteristics for transistors). Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses), the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

Citation

Fakher, S., Nejm, R., Ayesh, A., AL-Ghaferi, A., Zeze, D., & Mabrook, M. (2016). Single-Walled Carbon-Nanotubes-Based Organic Memory Structures. Molecules, 21(9), Article 1166. https://doi.org/10.3390/molecules21091166

Journal Article Type Article
Acceptance Date Aug 29, 2016
Online Publication Date Sep 2, 2016
Publication Date Sep 2, 2016
Deposit Date Sep 13, 2016
Publicly Available Date Sep 13, 2016
Journal Molecules
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 21
Issue 9
Article Number 1166
DOI https://doi.org/10.3390/molecules21091166

Files





You might also like



Downloadable Citations