Metallogeny of the Lesser Caucasus: From arc construction to post-collision evolution

Robert Moritz1,a, Rafael Melkonyan2, David Selby3, Nino Popkhadze4, Vlademir Gugushvili4, Rodrig Tayan2,* and Vagif Ramazanov5,**

1Department of Earth Sciences, University of Geneva, Rue des Maraïchers 13, 1205 Geneva, Switzerland
2Institute of Geological Sciences, National Academy of the Republic of Armenia, Baghramyan Avenue 24, 0019 Yerevan, Armenia
3Department of Earth Sciences, University of Durham, DH1 3LE United Kingdom
4A. Djanelidze Institute of Geology of I. Javakhishvili Tbilisi State University, Politkovskaia St. 5, 0186 Tbilisi, Georgia
5Geological Department, Baku State University, Z. Khalilov St. 23, Az1145, Baku, Azerbaijan

* deceased March 25th 2016
** deceased May 7th 2014

a corresponding author: Robert MORITZ, University of Geneva, Rue des Maraïchers 13, 1205 Geneva, Switzerland; e-mail: robert.moritz@unige.ch
Abstract

This contribution reviews the metallogenic setting of the Lesser Caucasus within the framework of the complex geodynamic evolution of the Central Tethys belt during convergence and collision of Arabia, Eurasia and Gondwana-derived microplates. New rhenium-osmium molybdenite ages are also presented for several major deposits and prospects, allowing us to constrain the metallogenic evolution of the Lesser Caucasus. The host rock lithologies, magmatic associations, deposit styles, ore controls and metal endowment vary greatly along the Lesser Caucasus as a function of the age and tectono-magmatic distribution of the ore districts and deposits. The ore deposits and ore districts can be essentially assigned to two different evolution stages: (1) Mesozoic arc construction and evolution along the Eurasian margin, and (2) Cenozoic magmatism and tectonic evolution following late Cretaceous accretion of Gondwana-derived microplates with the Eurasian margin.

The available data suggest that during Jurassic arc construction along the Eurasian margin, i.e. the Somkheto-Karabagh belt and the Kapan zone, the metallogenic evolution was dominated by subaqueous magmatic-hydrothermal systems, VMS-style mineralization in a fore-arc environment or along the margins of a back-arc ocean located between the Eurasin margin and Gondwana-derived terranes. This metallogenic event coincided broadly with a rearrangement of tectonic plates, resulting in steepening of the subducting plate during the middle to late Jurassic transition.

Typical porphyry Cu and high-sulfidation epithermal systems were emplaced in the Somkheto-Karabagh belt during the late Jurassic and the early Cretaceous, once the arc reached a more mature stage with a thicker crust, and fertile magmas were generated by magma storage and MASH processes. During the late Cretaceous, low-sulfidation type epithermal deposits and transitional VMS-porphyry-epithermal systems were formed in the northern Lesser Caucasus during compression, uplift and hinterland migration of the magmatic arc, coinciding with flattening of the subduction geometry.

Late Cretaceous collision of Gondwana-derived terranes with Eurasia resulted in a rearrangement of subduction zones. Cenozoic magmatism and ore deposits stitched the collision and accretion zones. Eocene porphyry Cu-Mo deposits and associated precious metal epithermal systems were formed during subduction-related magmatism in the southernmost Lesser Caucasus. Subsequently, late Eocene-Oligocene accretion of Arabia with Eurasia and final closure of the southern branch of the Neotethys resulted in the emplacement of Neogene collision to post-collision porphyry Cu-Mo deposits along major translithospheric faults in the southernmost Lesser Caucasus.

The Cretaceous and Cenozoic magmatic and metallogenic evolutions of the northern Lesser Caucasus and the Turkish Eastern Pontides are intimately linked to each other. The Cenozoic magmatism and metallogenic setting of the southernmost Lesser Caucasus can also be traced southwards into the Cenozoic Iranian Urumieh-Dokhtar and Alborz belts. However, contrasting tectonic, magmatic and
sedimentary records during the Mesozoic are consistent with the absence of any metallogenic connection between the Alborz in Iran and the southernmost Lesser Caucasus.

Introduction

The Lesser Caucasus is a major segment of the Tethyan belt, which extends from the Black Sea to the Caspian Sea, across Georgia, Armenia and Azerbaijan (Figs 1 and 2). This mountain belt links the Western and Central metallogenic Tethys belts with their extensions into Asia (Jankovic, 1977, 1997; Richards, 2015). The Lesser Caucasus was formed as a consequence of convergence and collision of Eurasia, Gondwana-derived terranes and Arabia, and it evolved from a Jurassic nascent subduction-related magmatic arc environment to a Neogene post-collisional setting (Fig. 3). This geodynamic evolution resulted in episodic ore formation in response to particular tectonic and magmatic events across the entire belt (Figs 1, 2 and 3).

In this contribution, we focus on ore deposit belts and districts from the Lesser Caucasus only (Figs 1 and 2), and discuss their genetic link with adjoining metallogenic provinces in eastern Turkey and northern Iran. While the metallogenic aspects of the Tethyan segments along Turkey and Iran have been relatively well addressed in recent contributions (e.g. Yigit, 2009; Kusçu et al., 2013; Aghazadeh et al., 2015), there is only fragmentary information available about the Lesser Caucasus in reviews about Tethyan metallogeny and Tethyan porphyry belts (e.g. Tvalchrelidze, 1980, 1984; Cooke et al., 2005; Richards, 2015). We deliberately restrict this review to the Lesser Caucasus, because of its particular position as a link between the Turkish and Iranian mountain belts, and to keep this report to a reasonable length. We are aware that the metallogenic evolution of this part of the Tethys belt goes beyond the geographic limits of the Lesser Caucasus, such as the Greater Caucasus for example (Tvalchrelidze, 1980, 1984), which includes orogenic gold-style mineralization (Kekelia et al., 2008), intrusion-related gold and polymetallic style mineralization (Okrostvaridze et al., 2015), and black shale-hosted gold and polymetallic deposits, such as the famous Filizçay and Kızıldere deposits (Markus, 2002; Kekelia et al., 2004).

The main host rock, alteration, ore characteristics, and ages of the ore districts and deposits described in this review are presented in Figures 1 and 2, summarized in Table 1, and set in a geodynamic scheme in Figure 3. New Re-Os molybdenite ages obtained for several ore deposits and occurrences are summarized in Table 2. The host rock lithologies, magmatic associations, deposit styles, ore controls and metal endowment vary greatly along the Lesser Caucasus as a function of the age and tectono-magmatic distribution of the ore districts and deposits. The mineral districts of the Lesser Caucasus can be grouped and discussed according to their distribution among the major tectonic and magmatic zones of this mountain belt (Fig. 2). The first group includes mineral districts associated with the Mesozoic subduction-related, magmatic evolution of the Eurasian margin, which are hosted...
by the Kapan zone, the Somkheto-Karabagh belt and its northern Georgian extension, named the
Artvin-Bolnisi zone (Fig. 2). The second group includes ore deposits of Cenozoic age that can be
correlated with tectonic and suture zones outlining the boundaries between the Eurasian margin and
terranes or microplates of Gondwana origin.

Geodynamic evolution of the Caucasus

The Caucasus orogenic belt extends from Crimea along the Black Sea to the Southern Caspian Sea,
and is subdivided into the Greater Caucasus in the north, the intermontane Transcaucasian Massif, and
the Lesser Caucasus to the south, sitting astride on the Eurasian plate and Gondwana-derived plates
(Khain, 1975; Adamia et al., 1981, 2011). The Greater Caucasus is a fold-and-thrust mountain belt
consisting of Proterozoic and Paleozoic metamorphic and magmatic basement rocks, covered by
Mesozoic and Cenozoic sedimentary rocks. It developed during late Proterozoic and Paleozoic
subduction of the Prototethys and Paleotethys along the Paleoecauian Eurasian margin, named the
Scythian platform. The Greater Caucasus was affected by the Variscan, Triassic-Jurassic Cimmerian
and Alpine orogenies (Adamia et al., 1981, 2011; Kazmin, 2006; Saintot et al., 2006).

The Transcaucasus massif consists of Neoproterozoic to Paleozoic metamorphic, ophiolitic and
granitic basement rocks (Bagdasaryan et al., 1978; Gamkrelidze and Shengelia, 1999; Shengelia et al.,
2006; Zakariadze et al., 2007; Mayringer et al., 2011), covered by late Triassic to Cenozoic volcano-
sedimentary rocks. Neoproterozoic and early Cambrian rocks of the Transcaucasus massif share
affinities with island arcs of the Arabian-Nubian shield. The Transcaucasus massif was accreted to
Eurasia during the early Carboniferous, followed by Paleoetethys subduction-related Permo-
Carboniferous magmatism (Zakariadze et al., 2007). To the west, the Transcaucasus massif extends
into the Sakarya and Pontide zones (Okay and Sahintürk, 1997; Yilmaz et al., 2000; Mayringer et al.,
2011). The extension to the east into Iran is still open to question (Kalvoda and Bábek, 2010).

The Lesser Caucasus constitutes the southernmost part of the Caucasus, and its geometry was shaped
by indentation tectonics (Philip et al., 1989). It was formed during north- to northeast-verging
Jurassic-Cretaceous subduction of a northern branch of the Neotethys beneath the Eurasian margin
(Figs 3a-b; Kazmin et al., 1986; Zonenshain and Le Pichon, 1986; Rolland et al., 2011), and closed
during the late Cretaceous, when the Gondwana-derived South Armenian block was accreted to
Eurasia (Fig. 3c; Rolland et al., 2009 a, b). As a consequence of the blocked subduction setting along
the Eurasian margin, the active late Cretaceous-Cenozoic Neotethys subduction zone jumped to the
southwest of the Turkish Bitlis-Pütürge massif (Fig. 3c; Kazmin et al., 1986; Zonenshain and Le
Pichon, 1986; Rolland et al., 2012). Interpretations about the final Arabia-Eurasia collision range
between the late Cretaceous (Mohajjel and Ferguson, 2000) and the Miocene (McQuarrie et al., 2003;
Guest et al., 2006; Okay et al., 2010). However, a collision between the late Eocene and the early
Oligocene (40-25 Ma) is favored by a majority of studies for the Caucasian-Zagros region (Vincent et al., 2005; Allen and Armstrong, 2008; Agard et al. 2011; Ballato et al., 2011; Verdel et al., 2011; McQuarrie and van Hinsberger, 2013).

Geological setting and evolution of the Lesser Caucasus

The Lesser Caucasus consists of three tectonic zones (Fig. 2): (1) the magmatic and sedimentary Somkheto-Karabagh belt and Kapan zone, (2) the Sevan-Akera suture zone, and (3) the South Armenian block (Sosson et al., 2010; Adamia et al., 2011). The ~350 km-long Somkheto-Karabagh belt and the ~70 km-long Kapan zone or block (Gevorkyan and Aslanyan, 1997; Mederer et al., 2013) belong to the Eurasian margin (Figs 1 and 2) and were developed along the southern margin of the Transcaucasian massif. Both belts have similar geologic and tectonic characteristics and are interpreted as a discontinuous Jurassic to Cretaceous tholeiitic to calc-alkaline island-arc formed during Neotethyan subduction (Sosson et al., 2010; Adamia et al., 2011), segmented by sub-latitudinal strike-slip faults (Kazmin et al., 1986; Gabriyelyan et al. 1989; see SSF in Fig. 2). The Somkheto-Karabagh and Kapan belts are subdivided in five broad series separated by unconformities, recording uplift and erosion events, including: (1) a thick sequence of Bajocian and Bathonian volcanic, volcanoclastic and sedimentary rocks, and a subsidiary Callovian sequence, (2) late Jurassic-early Cretaceous magmatic and sedimentary rocks, (3) mid- to late Cretaceous volcanic, volcanoclastic and sedimentary rocks, (4) Paleogene rocks, and (5) Quaternary rocks (Achikgiozyan et al., 1987; Sosson et al., 2010; Adamia et al., 2011; Mederer et al., 2013). The Mesozoic sequences are underlain by Proterozoic and Palaeozoic basement rocks in the Loki, Khrami, and Akhum-Assrikchai massifs of the northern Somkhet-Karabagh belt (Gamkrelidze and Shengelia, 1999; Shengelia et al., 2006; Zakariadze et al., 2007). The late Cretaceous extremity of the north Somkheto-Karabagh belt in Georgia is known as the Artvin-Bolnisi zone (Figs 1 and 2; Gamkrelidze, 1986; Yilmaz et al., 2000).

The ophiolite sequences of the Sevan-Akera zone represent the suture zone between the Eurasian Somkheto-Karabagh belt and the Gondwana-derived South Armenian block (Figs 1 and 2). The suture zone is the relict of two contemporaneous and parallel east- to northeast-verging subduction zones, one being located along the Somkhet-Karabagh belt, and a second intra-oceanic subduction zone, located to the west, between the Eurasian margin and the South Armenian block, explaining the formation of a back-arc oceanic basin between the two subduction zones (Fig. 3a; Galoyan et al., 2009; Rolland et al., 2009b, 2010, 2011; Hässig et al., 2013a, b). The ophiolites were obducted on the South Armenian block between 88 and 83 Ma (Galoyan et al., 2007; Rolland et al., 2010), and final collision between the Eurasian margin and the South Armenian block took place at 73-71 Ma (Rolland et al., 2009 a, b). According to recent paleomagnetic data, it remains open to question whether the ocean between the South Armenian block and the Eurasian margin was already closed or still open during the Santonian (~83.5-86 Ma), with geological data speaking in favor of the second
interpretation (Meijers et al., 2015). The Sevan-Akera ophiolite is correlated with the Izmir-Ankara-
Erzincan suture zone of northern Anatolia (IAES in Fig. 1; Yilmaz et al., 2000; Hässig et al., 2013b).

In the southernmost Lesser Caucasus, the tectonic boundary between the Eurasian Kapan block and
the Gondwana-derived South Armenian block is outlined by the northwest-trending, dextral strike-slip
Khustup-Giratakh fault (Fig. 2), where ultramafic rock, gabbro, spilite, andesite and radiolarite of the
Zangezur tectonic mélangé are interpreted as ophiolite remains (Knipper and Khain, 1980; Burman,
1994), and are imbricated with late Precambrian to early Cambrian metamorphic rocks and Devonian
and Permian sedimentary rocks (Belov, 1969; Khain, 1975). Hässig et al. (2013a) correlate the
Zangezur tectonic mélangé zone with the Sevan-Akera ophiolite, although relationships are hidden by
Cenozoic molasse and volcanic rocks (Fig. 2; Khain, 1975; Burman, 1994). Melkonyan et al. (2000)
and Hässig et al. (2015) suggest the presence of an additional Jurassic-Cretaceous west-verging
subduction zone of the Neotethys along the Gondwana-derived South Armenian block (Fig. 3a).

The Gondwana-derived South Armenian block is located to the southwest of the Sevan-Akera suture
zone, and is mainly exposed in southwestern Armenia, Nakhtchevan and the Tsaghkuniats massif, north of Yerevan (Fig. 2; Shengelia et al., 2006; Hässig et al., 2015). The terminology of the South
Armenian block can be traced back to Kazmin et al. (1986), and it is also named Iran-Afghanian
terrane (Gamkrelidze, 1997; Gamkrelidze and Shengelia, 2007) and Nakhtchevan-South Armenia
(Adamia et al., 2011). It includes the Miskhan/Tsaghquq-Zangezur, Yerevan-Ordubad, Araks and the
Paleozoic-Triassic Daralagez subterraines described in earlier contributions (e.g. Khain, 1975;
Gamkrelidze, 1986; Zonenshain and Le Pichon, 1986; Melkonyan et al., 2000; Saintot et al., 2006). It
consists of Proterozoic metamorphic basement rocks (Belov and Sokolov, 1973; Meijers et al., 2015),
and an incomplete succession of Devonian to Jurassic sedimentary and volcanogenic rocks, intruded
by late Jurassic granodiorite and leucogranite (Hässig et al., 2015; Meijers et al., 2015),
unconformably covered by late Cretaceous sedimentary rocks (Belov, 1968; Sosson et al., 2010),
Albian-early Turonian volcanic rocks (Kazmin et al., 1986), and Paleocene sedimentary rocks
(Djrbashyan et al., 1977). Paleozoic stratigraphic and lithological characteristics of the South
Armenian block differ from the ones of the Eurasian margin and correlate with the Malatya-Keber
platform of the Tauride block (Robertson et al., 2013), therefore supporting its Gondwanian origin
(Sosson et al., 2010). Paleolatitude interpretations based on magnetic data indicate that the South
Armenian block was located farther to the south during the early-middle Jurassic, and was separated
by a 2700 ± 600 km wide ocean from the Eurasian continent (Bazhenov et al., 1996; Gamkrelidze and
Shengelia, 2007). Barrier and Vrielynck (2008), Sosson et al. (2010), Hässig et al. (2013a, b, 2015)
and Meijers et al. (2015) group the South Armenian block together with the Eastern Anatolian
platform or Anatolide-Tauride block (e.g., Figs 3a-c), and interpret it as the northeastern part of the
Tauride microcontinent since the Jurassic. By contrast, Adamia et al. (1981; 2011) group the South
Armenia terrane together with the Sanandaj-Sirjan zone into the Central Iranian platform since the Jurassic, a paleoreconstruction shared by Golonka (2004) and Alavi (2007).

Abundant Cenozoic magmatic activity is recognized throughout the Lesser Caucasus (Kazmin et al., 1986; Lordkipnadze et al., 1989; Sosson et al., 2010). Paleocene to Eocene magmatism stitches the collisional structures (Rolland et al., 2011), and is generally interpreted as being related to final subduction of the Neotethys along the Eurasian margin (Kazmin et al., 1986; Lordkipnadze et al., 1989; Vincent et al., 2005; Moritz et al., in press), coeval with the voluminous, subduction-related Eocene magmatism in Iran (e.g., Allen and Armstrong, 2008; Agard et al., 2011; Ballato et al., 2011; Verdel et al., 2011). Other authors suggested a post-collisional geodynamic setting for the Eocene magmatism of the Lesser Caucasus (Dilek et al., 2010; Sosson et al., 2010). Subsequent Neogene and Quaternary magmatism is syn- to post-collisional (Kazmin et al., 1986; Lordkipnadze et al., 1989; Karapetian et al., 2001; Adamia et al., 2010; Sosson et al., 2010; Neill et al., 2015; Moritz et al., in press). The Dalidag pluton along the Sevan-Akera zone, the Pambak nepheline-bearing syenite pluton north of Yerevan, and the composite Meghri-Ordubad and Bargushat plutons in the southernmost Lesser Caucasus, at the contact between the South Armenian block and the Kapan zone, are major intrusions emplaced during the Cenozoic (Fig. 2; Khain, 1975; Moritz et al., in press).

The EW-oriented Adjara-Trialeti belt in western Georgia consisting of a Cretaceous volcanic arc and Paleogene flysch and volcanic rocks, and the Talysh mountains along the Azerbaijan side of the Caspian Sea (Fig. 1), consisting of Senonian to Paleocene flysch and Eocene-Oligocene volcanic rocks display similar geological characteristics and evolution. They are interpreted to have formed in back-arc settings during the Paleogene evolution of the Lesser Caucasus, which subsequently experienced basin inversion, uplift and transpression during the late Eocene to early Oligocene, attributed to the initiation of Arabian-Eurasian collision (Khain, 1975; Lordkipnadze et al., 1979, 1989; Zonenshain and Le Pichon, 1986; Brunet et al., 2003; Vincent et al., 2005; Adamia et al., 2010; Asiabhanah and Foden, 2012).

Re-Os molybdenite geochronology

Molybdenite-bearing samples were collected from outcrops and drill cores. Sample descriptions, locations and Re-Os results are reported in Table 2. The molybdenite grain size is typically between 100 to 500 μm. All samples were hand picked from crushed samples under a binocular to remove remaining impurities. An average of 30 mg of pure molybdenite separate was obtained for each sample. The Re and Os abundance and isotope composition determinations for ~10 to 50 mg aliquants of these molybdenite separates were conducted at the University of Durham (U.K.) as described by Selby and Creaser (2001a, b). In brief, weighted aliquots of the molybdenite mineral separates and tracer solution (\(^{185}\)Re + isotopically normal Os) were loaded into a Carius tube with 11N HCl (1 ml)
and 15.5N HNO₃ (3 ml), sealed, and digested at 220°C for ~24 h. Osmium was purified from the acid medium using solvent extraction (CHCl₃) at room temperature and microdistillation methods. The Re fraction was isolated using standard anion column chromatography. The purified Re and Os fractions were loaded onto Ni and Pt wire filaments, respectively, and their isotopic compositions were measured using negative thermal ionization mass spectrometry (Creaser et al., 1991; Völkening et al., 1991). Analyses were conducted on a Thermo Scientific TRITON mass spectrometer, with the Re and Os isotope composition measured using static Faraday collection. During the course of this study Re and Os blanks were <3 and 0.5 pg, respectively, with the ¹⁸⁷Os/¹⁸⁸Os of the blank being 0.25 ± 0.03.

Internal uncertainties include uncertainties related to Re and Os mass spectrometer measurements, blank abundances and isotopic compositions, spike calibrations (0.24% on ¹⁸⁷Os and 0.30% on Re, 2), and reproducibility of the RM8599 NIST molybdenite standard Re and Os isotope values.

Molybdenite of this study was analyzed during the same period as that of Lawley and Selby (2012), which presents an Re-Os age for RM8599 of 27.6 ± 0.1 and 27.6 ± 0.1 Ma, which is in agreement with the proposed age of 27.74 ± 0.11 Ma (n = 18; Markey et al., 2007). The molybdenite Re-Os model ages were calculated using the equation \[t = \ln \left(\frac{1}{(187 \text{Os}/187 \text{Re} + 1) / \lambda} \right) \], where and \(\lambda \) is the ¹⁸⁷Re decay constant (1.666 x 10⁻¹¹ ± 0.017 a⁻¹; Smoliar et al., 1996).

Ore formation during Jurassic magmatic arc construction along the Eurasian margin

The middle Jurassic to late Cretaceous geodynamic evolution of the Lesser Caucasus is characterized by long-lasting subduction of the Tethys oceanic lithosphere along the Eurasian margin, with progressive magmatic arc construction along the Somkheto-Karabagh belt and the Kapan zone (Fig. 3; Rolland et al., 2011). Ore formation was diachronous along the arc and resulted in several major mineral districts described below, which include contrasting ore deposit types. The more recent deposits are essentially porphyry-epithermal-type, but the origin of the earliest deposits remains the subject of debate.

The Alaverdi mining district: Jurassic lithologically- and structurally-controlled base metal deposits

The Alaverdi district of northern Armenia includes the Alaverdi, Akhtala, and Shamlugh deposits (Fig. 4; Table 1), of which only the last one is presently in production (since 2003). Copper ore extraction dates back to 4500 years BC and industrial mining began in the 18th century by French companies (Kozlovsky, 1991). This district accounted for 13% of Cu production of the Russian Empire in the beginning of the 20th century. The rock units are subdivided into middle Jurassic and late Jurassic-early Cretaceous complexes (Fig. 4; Sopko, 1961). Older crystalline basement was neither observed in outcrops, nor intercepted by a 1100m-long drill hole. The Alaverdi, Akhtala and Shamlugh ore deposits are hosted by the 3.5 km-thick middle Jurassic complex, defined as Bajocian and Bathonian.

They consist of lava, lava breccia, tuff, and pyroclastic rock, with basaltic, andesitic to dacitic and
subsidiary rhyolitic compositions, and interlayered sandstone. The late Jurassic-early Cretaceous complex is composed of basaltic andesite, andesite and tuff breccia interlayered with sandstone and limestone (Sopko, 1961; Lebedev and Malkhasyan, 1965; Ghazaryan, 1971). The oldest middle Jurassic unit yielded K-Ar whole-rock ages of 169 ± 1 and 171 ± 2 Ma (Bagdasaryan and Melkonyan, 1968), and the Haghpat plagiogranite (Fig. 4) yielded a K-Ar whole-rock age of 161 ± 3 Ma (Bagdasaryan, 1972).

The majority of the ore bodies are controlled by roughly NS- and EW-oriented faults, and by intersection between steeply dipping NE-oriented dikes and sill-like bodies (Zohrabyan and Melkonyan, 1999). At shallow levels, the ore bodies form stockworks and subhorizontal, stratiform lenses, whereas subvertical veins are the common ore type at deeper levels, especially at Alaverdi and Shamlugh (Fig. 4; Zohrabyan and Melkonyan, 1999; Calder, 2014). A Bajocian unit called keratophyre, consisting of rhyolitic pyroclastic rocks, constitutes a distinct marker and ore-bearing horizon in the district (Fig. 4), extending laterally from the Alaverdi deposit through Shamlugh to the Akhtala deposits (Nalbandyan and Paronikyan, 1966; Nalbandyan, 1968). At Shamlugh (Fig. 4), ore lenses are hosted by the Bajocian keratophyre, immediately below a rhyolite sill, termed “albitophyre” in the district (Sopko, 1961), and dated at 155.0 ± 1.0 Ma by U-Pb zircon geochronology (Calder, 2014). Because the albitophyre was affected by hydrothermal alteration related to ore-formation (Nalbandyan, 1968; Calder, 2014), the 155.0 ± 1.0 Ma age of the sill sets a maximum age of ore formation at Shamlugh. At the Akhtala deposit, ore bodies are also controlled by the contact of a subvolcanic quartz-feldspar porphyry dome with andesite and basalt within the lowermost Bajocian magmatic complex (Zohrabyan and Melkonyan, 1999), stratigraphically below the Shamlugh and Alaverdi deposits (Sopko, 1961; Calder, 2014).

Regional propylitic alteration predates ore formation and affects the lithologies within the Alaverdi district. It consists of prehnite, zoelite, chlorite, carbonate, albite, epidote, actinolite, and hematite. Regional epidote alteration is particularly well developed in the lowermost middle Jurassic sequences (Nalbandyan, 1968). Hydrothermal alteration spatially associated with the ore bodies at Alaverdi, Akhtala and Shamlugh consists of silicification, sericite, chlorite, carbonate and disseminated pyrite. Pyrophyllite and dickite were also described at Akhtala (Nalbandyan, 1968). The main opaque minerals at the Alaverdi and Shamlugh deposits are chalcopyrite, pyrite, sphalerite, bornite, chalcocite, and subsidiary galena, tennantite, stannite, bismuthite, native gold and silver, and electrum in a gangue of quartz, carbonate, sericite, and chlorite (Table 1; Sevunts, 1972; Khachaturyan, 1977). The Akhtala deposit is characterized by a barite, galena and sphalerite association, with subsidiary chalcopyrite, tennantite, tetrahedrite, bornite, cassiterite, electrum, and native gold and silver in a gangue of quartz, carbonate, sericite, chlorite, kaolinite, anhydrite and gypsum (Paronikyan, 1962). Local Fe-oxide-rich siliceous rocks at the Shamlugh deposit were interpreted as exhalative chert (Calder, 2014), but may also be a product of silicification and hematite alteration (e.g. Çağatay, 1993; Karakaya et al., 2012).
Kapan mining district: diversity of ore styles during Jurassic magmatic arc construction

The Kapan district in southern Armenia (Fig. 2), close to the border with Iran, consists of the producing Shahumyan and past-producing Centralni east and west deposits (Fig. 5). Industrial mining in the Kapan district dates back to the mid-19th century. At least 370,000 tons of Cu were mined in the Kapan district since 1953 (Wolfe and Gossage, 2009). Production in the open pit and underground workings of Centralni East ceased in 2005 and the Centralni West underground operation closed in 2008. The underground Shahumyan deposit remains the only active mine of the district.

Like in the Alaverdi district, the geology in Kapan is dominated by a middle Jurassic complex, and an late Jurassic-early Cretaceous complex (Achikgiozyan et al., 1987; Mederer et al., 2013, 2014). There are no older crystalline basement outcrops, and basement was not intercepted by an ~400m-long drill hole. The ore deposits are hosted by a ~1 km-thick Bajocian and Bathonian andesitic to dacitic sequence with subsidiary basaltic and rhyolitic compositions, consisting of lava, lava breccia, tuff, and pyroclastic rock. They were deposited in both subaerial and subaqueous environments, and include hyaloclastite, widespread amygdaloidal and porphyritic textures, and subsidiary pillow lava structures (Cholahyan et al., 1972; Achikgiozyan et al., 1987). District-wide epidote alteration is characteristic for the base of the middle Jurassic section and becomes less intensive towards the upper part of the middle Jurassic magmatic complex (Achikgiozyan et al., 1987). Quartz dacite from the middle Jurassic sequence was dated at 162 ± 5 Ma by K-Ar whole rock geochronology (Sarkisyan, 1970).

There are no plagiograne outcrops in the Kapan district, but a tonalite clast sampled in a polymict pebble dike yielded a U-Pb zircon age of 165.6 ± 1.4 Ma (Mederer et al., 2013), and gabbro-diorite bodies were intersected by drill holes at a depth of 390 m (Tumanyan, 1992). The middle Jurassic magmatic complex was partly eroded and unconformably covered by late Jurassic-early Cretaceous basaltic andesite, andesite, tuff breccia interlayered with sandstone and limestone (Akopyan, 1962; Achikgiozyan et al., 1987). Granodiorite, quartz-monzodiorite, gabbro and monzogabbro from the late Jurassic-early Cretaceous complex yielded U-Pb zircon ages between 131.5 ± 2.1 and 137.7 ± 1.6 Ma (Mederer et al., 2013).

Mineralization styles, metal endowment, paragenesis and hydrothermal alteration vary among the three main deposits of the Kapan district (Table 1). Centralni West is a Cu deposit, Centralni East a Cu-Au deposit, and Shahumyan is a polymetallic Cu-Au-Ag-Zn-Pb deposit, essentially mined for gold at present. East-west-oriented and steeply S-dipping ore veins, with up to 8% Cu, are the dominant mineralization style at the Centralni West deposit, accompanied by local replacement of the host rock matrix, where ore and gangue minerals precipitated around clasts of permeable volcano-sedimentary host rocks. The mineral assemblage consists predominantly of chalcopyrite and pyrite, with minor sphalerite, tennantite-tetrahedrite and galene, and traces of tellurides and sulfide-bismuth minerals in a quartz and carbonate gangue. Host rock alteration consists of chlorite, carbonate, epidote, and sericite (Achikgiozyan et al., 1987; Mederer et al., 2014). Hydrothermal muscovite from Centralni
West yielded an $^{40}\text{Ar}/^{39}\text{Ar}$ plateau age of 161.8 ± 0.8 Ma (50% of the released gas), which is considered to be the most reliable mineralization age within the Kapan district (Mederer, 2014; Mederer et al., 2014).

Stockwork is the dominant mineralization style at Centralni East, and most of the veins are roughly EW-oriented and dip steeply to the south. Vein-type ore bodies dominate over stockwork-style mineralization with increasing depth (Achikgiozyan et al., 1987). This deposit contains an intermediate- to high-sulfidation state sulfide mineral paragenesis, including mainly pyrite, colusite, bornite, sphalerite, covellite, and minor native silver and tellurides (Table 1). Quartz is the dominant gangue mineral with minor barite and gypsum. Silicification, phyllic alteration and residual quartz alteration with sericite, dickite and diaspore affect the andesitic to dacitic host rocks (Mederer, 2014; Mederer et al., 2014). Re-Os isochron dating based on five pyrite samples yielded an age of 144.7 ± 4.2 Ma (Mederer et al., 2014). Mederer (2014) discussed the reliability of the latter age: in the case this age was accepted, it would mean that ore formation at the Centralni East deposit, which is hosted by middle Jurassic magmatic rocks, occurred at the Jurassic-Cretaceous transition.

The presently producing Shahumyan deposit (Table 1) consists of over 100 steeply dipping EW-oriented veins, which can be traced for several hundred meters along strike, and over a vertical extent generally between 100 and 300 m. The veins are cut by the late Jurassic-early Cretaceous magmatic complex, which overlies the middle Jurassic rock complex. Distal propylitic alteration consists of chlorite, epidote, carbonate and pyrite. Phyllic alteration with sericite, quartz and pyrite prevails in proximity to the ore bodies. With decreasing depth, the phyllic alteration grades into an argillic alteration assemblage including dickite, quartz, pyrite and sericite. East-west-oriented and steeply dipping veins consisting of coarse-grained bladed pink alunite, and minor hematite, pyrite and quartz occur on surface in the northeastern part of the Shahumyan deposit, and alunite, associated with kaolinite and dickite, replaces plagioclase phenocrysts of the quartz-dacite host rock (Mederer, 2014).

The coarse-grained bladed alunite yielded a slightly disturbed $^{40}\text{Ar}/^{39}\text{Ar}$ plateau age of 156.1 ± 0.8 Ma for only 40% of the released gas. Such an age is consistent with the local geological setting, but it would imply ore formation during the late Jurassic (Mederer, 2014; Mederer et al., 2014). Pyrite, chalcopyrite, sphalerite, tennantite-tetrahedrite and galena predominate at Shahumyan in a gangue consisting of early quartz and late stage carbonate. Up to 40 µm-sized inclusions of enargite, digenite, bornite and chalcocite occur in pyrite. Most of the gold and silver is associated with tellurides (Matveev et al., 2006; Mederer et al., 2014), but Achikgiozyan et al. (1987) reported the presence of native gold.
Jurassic geodynamic and metallogenic evolution of the Lesser Caucasus

Magmatism along the Eurasian margin evolved from tholeiitic to calc-alkaline from the middle Jurassic to early Cretaceous (Kazmin et al., 1986; Lordkipadnize et al., 1989; Zohrabyan, 2007). Bonitites were reported locally along the Somkheto-Karabagh belt by Kazmin et al. (1986) and Lordkipadnize et al. (1989). Minor and trace element data (Ti, Z) also reveal an evolution from tholeiitic to transitional compositions during the middle Jurassic to an essentially calc-alkaline composition during the late Jurassic-early Cretaceous (Zakariadze et al., 1987; Mederer, 2013; Calder, 2014). These data document progressive magmatic arc construction along a convergent margin, starting in a nascent, immature suprasubduction environment during the Jurassic and evolving to a more mature arc environment during the Cretaceous.

If one accepts the interpretations by Galoyan et al. (2009), Rolland et al. (2009b, 2010, 2011) and Hässig et al. (2013a, b), the Jurassic-Cretaceous ocean immediately adjacent to the west of the Eurasian margin was a back-arc basin (Fig. 3a). Yilmaz et al. (2000) suggest that the Somkheto-Karabagh belt evolved from a middle Jurassic arc setting to a late Jurassic-Calcareous fore-arc environment. Rolland et al. (2011) recognize a major regional exhumation episode attributed to a subduction geometry steepening at ~166-167 Ma based on 40Ar/39Ar cooling ages from the northern Somkheto-Karabagh belt. The latter interpretation is consistent with Nd and Sr isotope data, which reveal a larger mantle input in the source regions of the late Jurassic-early Cretaceous magmatic rocks in comparison to the middle Jurassic rocks, which is attributed to progressive slab roll-back (Mederer et al., 2013; Calder, 2014).

Based on geochronological data, the Centralni West Cu deposit with an age of 161.8 ± 0.8 Ma (Mederer, 2014), and the Shamlugh base metal deposit with an upper 155.0 ± 1.0 Ma age limit (Calder, 2014) are the oldest ore occurrences in, respectively, the Kapan and the Alaverdi districts (Fig. 2). In fact, because of the stratigraphic position of the Akhtala deposit within the lowermost Bajocian magmatic complex (Zohrabyan and Melkonyan, 1999), ore formation may have started prior to 155 Ma in the Alaverdi district. It can be concluded, that the earliest ore deposit formation along the Somkheto-Karabagh belt and the Kapan zone, likely took place along a nascent magmatic arc setting, rimming a back-arc ocean, broadly coinciding with a major rearrangement of the subduction geometry, as the subducting plate was progressively steepening during the middle to late Jurassic transition.

In both the Kapan and the Alaverdi districts, there is ample evidence for a seawater environment during deposition of the middle Jurassic host rocks and during ore formation, including abundant hyaloclastite, and subsidiary pillow lava structures in the volcanic and volcanoclastic rocks interlayered with reef limestone and carbonaceous sandstone in the middle Jurassic sequence at Kapan (Cholahyan et al., 1972; Achikgiozyan et al., 1987; Mederer et al., 2013). At the Shamlugh deposit, the ore-bearing Bajocian keratophyre is overlain by marine sedimentary rocks (Sopko, 1961), and
sulfide and pumice clasts within shale immediately overlying the ore horizon indicate that mineralization was reworked during sedimentation, and that the latter was coeval with the waning stages of Jurassic volcanism (Calder, 2014). Strontium and sulfur isotopic compositions of, respectively, carbonates and sulfates support the participation of seawater in the hydrothermal system at Shamlugh (Calder, 2014). The same is the case for the Sr isotopic composition of late stage carbonates in ore deposits of the Kapan district (Mederer, 2013). These features, together with the hydrothermal alteration including chlorite, carbonate, quartz, epidote, pyrite and sericite, and the Cu-dominated metal association, are consistent with an ore-forming system in a submarine environment during the middle to late Jurassic transition, comparable to volcanogenic massive sulfide (VMS) type deposits (Galley et al., 2007).

Middle Jurassic plagiogranite intrusions are recognized along the entire Somkheto-Karabagh belt (Melnikyan, 1965, 1976; Ghazaryan, 1971), including the Jurassic Haghpat plagiogranite of the Alaverdi district (Fig. 4). Together with clasts of tonalite from subvertical polymict pebble dikes dated at 165.6 ± 1.4 Ma and the presence of gabbro-diorite intersected by drill-holes in the Kapan district (Mederer et al., 2013), they provide evidence of intrusive activity at depth during Middle Jurassic nascent arc construction along the Somkheto-Karabagh belt and the Kapan zone. This intrusive association together with the tholeiitic to transitional composition of the middle Jurassic volcanic complex is reminiscent of composite, synvolcanic gabbro-diorite-tonalite clusters underlying eruptive centers, interpreted as heat engines sustaining hydrothermal systems in VMS districts (Galley, 2003; Galley et al., 2007). In addition, the district-wide epidote alteration at the base of the middle Jurassic complex in both the Alaverdi and the Kapan districts (Naldanbyan, 1968; Cholahyan et al., 1972; Achikgiozyan et al., 1987) is comparable to semi-conformable epidote-dominated hydrothermal alteration zones also described at depth in many VMS districts, immediately at the top of synvolcanic gabbro-diorite-tonalite intrusions (Galley, 1993; Galley et al., 2007). In brief, the early mineralization stages at the Centralni West Cu and Shamlugh deposits in or adjacent to a subduction-related, submarine magmatic arc, characterized by a tholeiitic to calc-alkaline evolution at the middle to the late Jurassic is comparable to other typical VMS districts and submarine hydrothermal systems (de Ronde et al., 2005, 2011; Huston et al., 2011; Hannington et al., 2005). The setting could be analogous to a fore-arc environment if we accept the interpretation of Yilmaz et al. (2000) for the Somkheto-Karabagh belt. Similar fore-arc VMS systems have been described in the Dominican Republic (Torró et al., 2016), and in the Uralides, where they are defined as Baimak-type ore deposits (Herrington et al., 2005a,b).

In the Kapan area (Fig. 5), the Centralni East and Shahumyan deposits contain high-sulfidation state opaque mineral and advanced argillic alteration assemblages, including alunite and enargite, which are typically recognized in subaerial epithermal and porphyry settings (e.g., Rye et al., 1992; Einaudi et al., 2003; Rye, 2005; Simmons et al., 2005). However, the same alteration and opaque mineral
associations are also reported in submarine hydrothermal systems and VMS deposits, where they are considered as evidence for the involvement of magmatic-hydrothermal sulfur (e.g., de Ronde et al., 2005; 2011; Huston et al., 2011). The questionable ages obtained for the Centralni East (Re-Os pyrite isochron age of 144.7 ± 4.2 Ma) and Shahumyan deposits (disturbed \(^{40}\)Ar--\(^{39}\)Ar plateau age of 156.1 ± 0.8 Ma for alunite) leave the question open as to whether the two deposits are roughly contemporaneous with the Centralni West deposit or if they represent three, independent pulses of mineralization between 162 and 145 Ma (Mederer, 2014; Mederer et al., 2014). Because of such uncertainties, the deposits from the Kapan district may represent either (1) coeval hybrid VMS-epithermal-porphyry systems, or (2) juxtaposition of different mineralization styles with different ages, due to rapid changes in local tectonic, magmatic, sedimentary and ore-forming conditions, as described in subaqueous metallogenic settings within Pacific magmatic arcs and in Australia (Hannington, 1997, 2011; Large et al., 2001).

Late Jurassic to early Cretaceous mature magmatic arc evolution along the Eurasian margin:

Porphyry Cu systems and associated epithermal deposits

The Teghout deposit: porphyry-Cu ore formation in the Alaverdi mining district

The Teghout porphyry-Cu deposit is a distinct and the youngest deposit of the Alaverdi district (Fig. 4). Teghout has been mined since 2015, and it is spatially associated with the polyphase, calc-alkaline Koghb-Shnokh intrusion (Fig. 4), which marks the final stage of the late Jurassic magmatic evolution. Quartz diorite-tonalite yielded a U-Pb zircon age of 152.87 ± 0.72 Ma (Calder, 2014), and leucogranite from the same intrusion yielded a Rb-Sr isochron age of 156 ± 3 Ma (Melkonyan and Ghukasian, 2004), confirming earlier geological interpretations (Aslanyan, 1958; Melkonyan, 1976). Re-Os molybdenite dating yielded an age of 145.85 ± 0.59 Ma (Table 2), which coincides with K-Ar ages of 145.5 ± 0.5 Ma and 149 ± 3 Ma for muscovite separates from quartz-molybdenite veins (Paronikyan and Ghukasian, 1974). The tonalite and quartz-diorite porphyry stock-like bodies and dikes, and the sulfide mineralization of the Teghout deposit are structurally controlled by N- to ~NE-oriented faults or zones of deformed rocks. The Koghb-Shnokh intrusion and its country rocks were affected by initial actinolite-epidote and epidote-chlorite alteration, followed by quartz-sericite alteration and silicification. The mineralization consists of sulfide stockwork, dissemination and veins. Predominant pyrite is accompanied by chalcopyrite and molybdenite, subsidiary sphalerite, galena, chalcocite, covellite, bornite, and magnetite in a gangue of quartz, anhydrite, carbonate and gypsum (Table 1). Rare enargite, luzonite, and native gold have also been reported (Amiryan et al., 1987).

Gedabek and adjoining districts: Early Cretaceous, apical porphyry Cu and epithermal systems

Gedabek ore deposit district: Mining in the Gedabek district started about 2000 years ago, with industrial mining beginning about 1849 at the Gedabek mine (Fig. 6a). About 56,000 tons of copper and 134.16 tons of gold-silver doré were produced from 1864 to 1917, when mining activity ceased.
with the start of the Russian Revolution. Gedabek is the major porphyry-epithermal district of the Somkheto-Karabagh belt (Fig. 6a; Babazadeh et al., 1990). The district is characterized by a long magmatic evolution starting with Bajocian and Bathonian andesitic to rhyolitic volcanic and pyroclastic rocks, and the emplacement of the ~65 km²-large Atabek-Slavyan plagiogranite, dated at 152-172 Ma by K-Ar geochronology (Ismet et al., 2003). Late Jurassic-early Cretaceous diorite and granodiorite, and subsidiary aplites of the Gedabek intrusion were dated by whole-rock K-Ar geochronology between 129 and 142 Ma, with one outlier at 150 Ma (Ismet et al., 2003). The Gedabek intrusion is reported as Kimmeridgian on the local maps (Fig. 6a), but an early Cretaceous age for this intrusion is more consistent with the K-Ar ages reported by Ismet et al. (2003). The ore deposits and prospects of the district are spatially related to the emplacement of quartz-diorite and granodioritic porphyritic stocks and dikes post-dating the Gedabek intrusion, and the middle Jurassic Atabek-Slavyan plagiogranite (Fig. 6a; Babazadeh et al., 1990). The porphyry-Cu Garadagh, Kharkhar, and Djaygir prospects are located in the northern part of the district, and are spatially associated with the Atabek-Slavyan massif. This part of the district experienced the most intense uplift of the region (Babazadeh et al., 1990). Epithermal deposits and prospects with variable sulfidation state characteristics are mainly located to the south of the district at Gedabek, Bittibulag, Novogorelovskva, etc. (Fig. 6a).

According to Babazadeh et al. (1990), the ore deposits of the Gedabek district are controlled by a deep-seated, ~NS-oriented, orogen-transverse arc-shaped fault. The 700 to 800 m-wide stockwork-type ore bodies of the porphyry Cu deposits are stretched along the same direction over a distance of 1.5 to 2 km. The major part of mineralization in the porphyry systems is associated with the central quartz-sericite-pyrite alteration evolving outwards into a quartz-sericite and argillic alteration, and propylitic alteration in the periphery (Table 1). Potassic alteration is only poorly developed in this mining district (Babazadeh et al., 1990). This suggests that the Garadagh, Kharkhar, and Djaygir prospects represent the apical parts of typical porphyry Cu systems (Sillitoe, 2010). The quartz diorite and granodioritic porphyritic stocks and dikes, associated with the porphyry Cu prospects are also hydrothermally altered and impregnated with sulfides. The highest ore grades are located in the apical parts of a quartz diorite porphyry intrusion at the Garadagh and Kharkhar prospects. At Kharkhar, alteration consists essentially of sericite-quartz, local argillic alteration (kaolinite), surrounded by propylitic alteration. The main opaque minerals are pyrite and chalcopyrite, and subsidiary molybdenite, with one molybdenite sample from Kharkhar yielding a Re-Os age of 133.27 ± 0.53 Ma (Table 2).

Gedabek, Bittibulak and Novogorelovka are the best described epithermal occurrences (Table 1; Fig. 6a). Bittibulahk is located along a NW-oriented structure at the contact with Bajocian andesite and andesitic tuff and the Atabek-Slavyan plagiogranite. The Cu-As-Au mineralization is a 60 m by 50 m-sized body, including small lenses of enargite and barite surrounded by quartz-pyrite veins and
disseminations, and the wall-rock alteration consists of silicification, sericite and kaolinite. Novogorelovka is a Cu-Zn stockwork-type NW-oriented ore body, hosted by early Bajocian andesite and andesitic tuff crosscut by a late Jurassic quartz diorite. The host rocks are silicified, sericitized and kaolinitized. Gedabek is the best-studied deposit and only operating mine in the district. The ore body is a sub-horizontal lens of highly silicified rocks at the contact between middle Jurassic andesitic volcanoclastic rocks and a late Jurassic granodiorite. Hydrothermal alteration is lithologically controlled by a subhorizontally bedded volcanoclastic rock sequence. Early low-sulfidation alteration and mineralization includes pervasive silicification, microcrystalline adularia and disseminated pyrite, and is crosscut by argillic alteration, including kaolinite, and stockwork mineralization, with the later paragenetic assemblages consisting of an intermediate- to high-sulfidation assemblage, including enargite and covellite. Throughout the paragenetic sequence, sphalerite changes in composition from Fe-rich to Fe-poor. Electrum is deposited before the transition towards a late enargite-covellite assemblage (Hemon et al., 2012; Hemon, 2013). According to Hemon (2013), the alteration characteristics and the temporal evolution of the hydrothermal system at Gedabek are comparable with the Round Mountain deposit, U.S.A. (Sander and Einaudi, 1990).

Chovdar and Gosha high-sulfidation epithermal systems, and Dashkesan deposit: The Chovdar deposit is located to the northwest of the major Dashkesan deposit (Fig. 2), and mining started in 2014. The deposit is hosted by middle Jurassic basic to felsic volcanic rocks and tuff (Fig. 6b). Gold mineralization is associated with subvertical barite-polymetallic veins and with highly silicified stratiform horizons, which include occurrences of vuggy silica, and disseminated pyrite and kaolinite. The silicified rock is highly brecciated in some places. Vuggy silica, with vugs filled with pyrite, enargite, tetrahedrite-tennantite and kaolinite was encountered during drilling (Table 1).

The major Dashkesan Fe-Co deposit, in proximity to Chovdar, consists of stratiform magnetite-hematite skarn bodies, crosscut by uneconomic Co-bearing sulfide bodies. The ore bodies are hosted by late Jurassic sedimentary rocks intruded by early Cretaceous (Neocomian) gabbro and granite of the Dashkesan intrusion, which is coeval with the Gedabek intrusion. Late Jurassic volcanic rocks adjacent to the skarn bodies, at a location named Alunite Dag, are pervasively altered to alunite, with associated kaolinite, sericite and silicification, grading laterally into hematite alteration (Kashkai, 1965; Baskov, 2012).

The Gosha prospect, northwest of the Gedabek district (Fig. 2), is mainly hosted by Bajocian andesitic pyroclastic rocks, intruded by small dioritic intrusions. Mineralization is controlled by steeply dipping EW- and NS-oriented faults filled with clay minerals (kaolinite) and disseminations and small clusters of pyrite (Fig. 6c). The host rock is locally brecciated. Gold is associated with pyrite and tellurides along the faults and veins. The host rocks are silicified, and contain kaolinite and disseminated pyrite (Table 1).
The Mehmana mining district of the southernmost Somkheto-Kabaragh belt

The Mehmana district is located in the southeasternmost part of the Somkheto-Karabagh belt (Fig. 2), and includes the Drmbon/Gizilbulag Cu-Au deposit, the Mehmana Pb-Zn deposit and several other occurrences are described as porphyry Cu type. The main host rocks are Bajocian and Bathonian volcanic and volcano-sedimentary rocks, covered by late Jurassic volcanic breccia and sedimentary rocks (Vardanyan, 2008; Mederer et al., 2014). Steeply E-dipping andesite and dacite dikes crosscut the middle and late Jurassic volcanic rocks. The major granitic to tonalitic Mehmana intrusion from the western part of the district has been dated at 154-147 Ma by U-Pb zircon geochronology (Galoyan et al., 2013), and 131-152 Ma ages were obtained by K-Ar dating of quartz diorite and granodiorite from the same intrusion (Ismet et al., 2003).

At Drmbon/Gizilbulag, the economic mineralization consists of three lens-shaped lithologically controlled ore bodies, which grade downwards into brecciated host rock with stockwork and disseminated mineralization. The ore bodies are hosted by late Bajocian andesite and dacite, and are capped by a quartz dacite sill, which is interpreted to have been a major fluid barrier during ore-formation by Vardanyan and Zohrabyan (2008). The main opaque minerals are pyrite, chalcopyrite, galena and gold in a quartz matrix, followed by sphalerite and chalcopyrite in a carbonate matrix (Table 1). In proximity to the ore deposit, the host rocks are altered to sericite and abundant hematite, and chlorite and carbonate replace mafic minerals. Pre- to syn-mineralization polymict matrix-supported pebble dikes crosscut late Jurassic agglomerates, and contain blocks of Oxfordian limestone. Therefore, the mineralization is interpreted as syn-to post-Oxfordian in age (Vardanyan, 2008; Mederer et al., 2014).

Porphyry-Cu and epithermal ore deposits: mature stage of the Somkheto-Karabagh magmatic belt

The Teghout deposit is the oldest, typical stockwork-style porphyry Cu system along the Somkheto-Karabagh belt, with an age of 145.85 ± 0.59 Ma (Table 2). This indicates that the switch from a submarine magmatic-hydrothermal or VMS mineralization style to typical porphyry ore-forming systems occurred within 10 m.y. or less in the Alaverdi district (Fig. 4). The next significant porphyry-epithermal event occurred at about 133 Ma in the central Somkheto-Karabagh belt at the Gedabe district (Fig. 6a). These classical epithermal-porphyry centers were clearly formed during the subduction evolution of the Somkheto-Karabagh belt (e.g. Fig. 3a). They document that this belt had evolved towards a mature island-arc stage at the Jurassic-Cretaceous transition and during the early Cretaceous, once the arc was sufficiently thickened, and when sufficient amounts of fertile magmas were generated over time by MASH processes, as is observed for typical porphyry districts (Richards, 2003; Cooke et al., 2005; Sillitoe, 2010; Hou et al., 2011; Chiaradia, 2014).
The porphyry Cu and high-sulfidation epithermal ore deposit association of the Gedabek district, with the adjoining Gosha prospect and Chovdar deposit (Fig. 6), is comparable to the Panagyurishte district in Bulgaria, where several paired porphyry-epithermal systems are present (Moritz et al., 2004; Von Quadt et al., 2005; Chambeafort et al., 2007; Kouzmanov et al., 2009). Babazadeh et al. (1990) stated that the Gedabek district experienced intense uplift during the early Cretaceous. This interpretation is shared by Sosson et al. (2010), who describe a major erosion event and unroofing of the plutons of the magmatic arc during the early Cretaceous. Sosson et al. (2010) attributed the uplift to subduction of an oceanic plateau or an intra-oceanic spreading ridge. Given such an uplift and denudation setting, it remains open to question how the epithermal deposits and prospects were preserved in the Gedabek district. Indeed, epithermal ore deposits, which form within the uppermost part of the crust, are particularly vulnerable to rapid erosion (Hedenquist et al., 2000; Simmons et al., 2005). Concealment by basin sedimentation or tectonic processes following shortly ore formation are typically required to preserve old epithermal deposits (e.g., Masterman et al., 2002; Kesler et al., 2004; Chambeafort and Moritz, 2006). Further studies are necessary to understand, which processes can explain the preservation of epithermal deposits and prospects in the Gedabek district.

Interpretation of the ore deposits in the Mehmana district (Fig. 2) remains more equivocal, especially to understand whether the deposits were formed in subaqueous or subaerial environments. Because of the poor age constraints, the ore deposits and prospects from the Mehmana district could be coeval with the early mineralization stages of the Kapan and Alaverdi districts (Mederer et al., 2014). On the other hand, younger ages are very likely, based on the reported presence of the Kashen porphyry Cu and epithermal style mineralization in the Mehmana district (Mederer et al., 2014), and therefore ore formation in this district could be roughly contemporaneous with porphyry and epithermal systems at Teghout or Gedabek. Clearly, further comprehensive studies are necessary to verify this.

Local hydrothermal alteration and sulfide veining occur within the late Jurassic-early Cretaceous and Paleogene magmatic complexes of the Kapan block, suggesting the presence of porphyry-type ore-forming systems, but their age remains uncertain. They include polymetallic veins at Bartsravan (Fig. 5) hosted by volcanic and subvolcanic rocks (Zohrabyan et al., 2003), and stockwork-type Cu-Au-Mo mineralization at Shikahogh (Fig. 5), at the outer contact of an early Cretaceous intrusion within late Jurassic and early Cretaceous rocks (Achikgiozyan et al., 1987).

Toukhmanouk precious and base metal prospect – an anomaly?

The Toukhmanouk prospect is located within the Tsaghkuniats massif, belonging to the easternmost part of the Gondwana-derived South Armenian block (Fig. 2; Shengelia et al., 2006; Hässig et al., 2015), in an area with abundant prospects and mines, including the Meghradzor deposit and the Hanqavan prospect (Fig. 7). Eocene to Holocene sedimentary and magmatic rocks outcrop in the
eastern downthrown block along the Marmarik fault, and the western uplifted block exposes Jurassic
intrusions, and metasedimentary and metamorphic basement rocks. Toukhmanouk consists of ~NE-
oriented, subvertical quartz-carbonate-sulfide vein swarms crosscutting Jurassic and Cretaceous
volcanic and intrusive rocks (Wheatley and Acheson, 2011), as well as trondhjemitic interpreted as
Proterozoic in age. The vein corridors are typically 150 to 200 m-wide, and can be traced along strike
for more than 1 km. The main sulfides are sphalerite, galena, pyrite and arsenopyrite, and the valuable
commodities are gold and silver (Table 1). Molybdenite was dated at 146.14 ± 0.59 Ma by Re-Os
geochronology (Table 2). Although the latter Re-Os age eect coincides with the one of the Teghout
deposit at 145.85 ± 0.59 Ma (Table 2), it cannot be linked to the long-lasting Jurassic-Cretaceous east-
verging subduction underneath the Somkhe-to-Karabagh arc, because Toukhmanouk lies within the
South Armenian block, to the west of the Sevan-Akera suture zone, that is on the opposite side of the
active Eurasian margin to which the porphyry deposits at Teghout and Gedabek are related to (Fig. 2).
However, Melkonyan et al. (2000) and Hässig et al. (2015) suggested that a S- to SW-verging
Jurassic-early Cretaceous subduction zone was active along the eastern margin of the South Armenian
block (Fig. 3a). Therefore, the Toukhmanouk ore-forming system maybe a product of subduction
beneath the South Armenian block, if we accept such a geodynamic interpretation.

The Bolnisi mining district, Artvin-Bolnisi zone: epithermal and transitional mineralization
systems during late Cretaceous arc evolution along the Eurasian margin

The late Cretaceous Bolnisi district (~87-71 Ma) is the last major metallogenic event before the South
Armenian block was accreted with the Eurasian margin (Fig. 3b). It documents hinterland migration of
the active magmatic arc, which Rolland et al. (2011) attribute to a flatter geometry of the subducting
oceanic slab. This resulted in uplift of the arc and a compressional setting during the late Cretaceous
(Rolland et al., 2011).

Mining in the Bolnisi district started during the Bronze age according to archaeological investigations
(Hauptmann and Klein, 2009), and the Sakdrisi deposit is reported as the world’s oldest gold mine
(Feresin, 2007; Stöllner et al., 2014). The ore deposits and prospects of the Bolnisi mining district are
hosted by late Cretaceous rocks emplaced in a depression between the two uplifted Khrami and Loki
basement blocks (Fig. 8), composed of Neoproterozoic to Palaeozoic metamorphic and intrusive
rocks, and covered by early Jurassic to early Cretaceous volcanic and sedimentary sequences
(Zakariadze et al., 2007; Adamia et al., 2011). The late Cretaceous host rocks are subdivided into six
volcanogenic suites, generally interpreted to be Cenomanian to Campanian in age, and overlain by
Maastrichtian limestone and marl (Gambashidze, 1984; Apkhazava, 1988; Gugushvili et al., 2014;
Popkhadze et al., 2014). The arc-related, calc-alkaline volcanic rocks include abundant pyroclastic
rocks, lava, extrusive domes and sub-volcanic intrusions and dikes, with a predominantly rhyolitic,
dacitic, and andesitic composition, except one Santonian suite (Tanzia) and one late Campanian suite
(Shorsholeti), which are dominantly basaltic, and partly alkaline in composition (Lordkipnadze et al., 1989; Gugushvili et al., 2014; Popkhadze et al., 2014). The late Cretaceous volcanic rocks were deposited in a shallow water environment (Adamia et al., 2011).

Gugushvili (2004), and Gugushvili et al. (2014) recognized a stratigraphic control on the distribution of ore deposits and prospects in the Bolnisi district. The presently producing Madneuli deposit and the Tsiteli Sopeli, Kvemo Bolnisi and David Gareji prospects from the eastern part of the district (Fig. 8) are hosted by the stratigraphically older volcanic and volcano-sedimentary rocks of the Mashavera suite interpreted as late Turonian to early Santonian in age. A second group of ore occurrences, including the presently producing Sakdrisi deposit, and the Darbazi, Imedi, Beqfkari, Bnelikhevi and Samgreti prospects, in the western district (Fig. 8), are hosted by volcanic and volcano-sedimentary rocks of a stratigraphically younger suite named Gansandami suite, and interpreted as Campanian in age. A granodiorite porphyry to quartz diorite porphyry intrusion crosscut by drilling at a depth of 800-900 m beneath the Madneuli deposit hosted by the Mashavera suite was dated by whole-rock K-Ar geochronology at 88-89 Ma (Rubinstein et al., 1983; Gugushvili and Omiadze, 1988), and rhyolite domes from the same area yielded whole-rock K-Ar ages of 84-85 Ma (Gugushvili, 2004). Moritz et al. (2012) reported U-Pb zircon ages of 86.6 and 87.1 Ma for dikes crosscutting the Mashavera unit.

All ages are consistent with Coniacian to Santonian stratigraphic ages of the Mashavera suite. Pyroclastic rocks at Sakdrisi and rhyolite domes from the Sakdrisi and Beqfkari areas (Fig. 8) yielded K-Ar ages of 77.6 Ma and 71-72 Ma, respectively (Gugushvili, 2004), which are consistent with the Campanian stratigraphic age of the Gansandami host rock unit. Nannoplankton determinations by Migineishvili and Gavtadze (2010) of samples from the Mashavera suite suggest a younger Campanian age, which question the above-mentioned Coniacian to Santonian radiometric ages.

The Madneuli polymetallic deposit

The Madneuli open pit exposes different styles of mineralization. One mineralization style consists of a deep, vertical stockwork and breccia composed of, respectively, veins and matrix with a quartz-pyrite-chalcopyrite assemblage with subsidiary enargite, covellite and sphalerite, passing upwards into quartz-barite-sphalerite-galena-pyrite subvertical veins, and into stratiform massive sulfide ore bodies with sphalerite, galena, chalcopyrite, pyrite and tennantite-tetrahedrite, and sandstone lenses cemented by barite in the uppermost levels (Gugushvili et al., 2001; Migineishvili, 2002, 2005; Gialli et al., 2012; Gialli, 2013). The copper ore was mined at the beginning at Madneuli and is now nearly exhausted. The immediate host rocks of the stockwork and vein mineralization are silificed and pass laterally into a quartz-sericite-pyrite zone, followed by a distal quartz-chlorite-sericite envelope. The hanging wall on top of the stratiform sulfide and barite lenses is dominated by chlorite alteration (Gialli et al., 2012; Gialli, 2013). Migineishvili (2002, 2005) reported alunite, kaolinite, pyrophyllite and jarosite in the altered rocks from the shallow part of the deposit. Little et al. (2007) described
fossils from the Madneuli deposit interpreted as polychaete worm tubes, which belong to fauna
typically found in submarine hydrothermal vents. A second style of mineralization is a steep zone
consisting of a quartz-chalcedony vein network containing pyrite, hematite, gold, tellurides, and
subsidiarychalcopyritesurroundedbyaquartz-chlorite-pyrite alteration zone (Azhgirey and Berman,
1984; Geleishvili, 1989; Gialli et al., 2012; Gialli, 2013). This second mineralization type is presently
mined at Madneuli, and includes the economic gold reserves of the deposit (Gugushvili, 2004;
Migineishvili, 2005) with an average Au content of 1.3 ppm in 30 Mt of ore. The host-rock volcano-
sedimentary successions were deposited under alternating subaqueous and subaerial conditions related
to intermittent uplift and subsidence phases (Gugushvili et al., 2001, 2014; Migineishvili, 2002, 2005).
Detailed field and petrographic studies by Popkhadze et al. (2014) support the subaqueous origin of
the majority of the host rocks, including thick pyroclastic sequences. Although there are divergences
about details, the proposed genetic models are consistent with a submarine magmatic-hydrothermal
system, similar to a transitional VMS-epithermal setting with a potential porphyry system at depth
(Gugushvili et al., 2001, 2014; Migineishvili, 2002, 2005; Gialli et al., 2012; Gialli, 2013). A vertical
distribution of mineralization styles similar to the one of Madneuli is recognized in other prospects
and deposits of the Bolnisi district, including Sakdrisi, Kvemo Bolnisi and David Gareji (Fig. 8), with
copper-rich ore bodies at depth grading into sphalerite, galena, barite and gold-bearing mineralization
in the shallower parts of the mineralized systems (Gugushvili et al., 2001, 2014; Gugushvili, 2004).

The Sakdrisi epithermal deposit

The Sakdrisi deposit (Fig. 8) is part of a ~2 km-long, NE-trending range, which includes four other
prospects. It is hosted by a subhorizontal sequence of rhyodacitic, dacitic, and andesitic volcanic and
volcanoclastic rocks, which have been silicified down to a depth of 100-150 m below surface, locally
the wallrock alteration consists of carbonates and clay minerals (illite), and epidote is encountered
locally at depth, about 150-200 m below surface (Gugushvili, 2004; Gugushvili et al., 2014).
Subvertical gold-bearing quartz-barite zones predominate in the SW-part of the Sakdrisi trend with
gold grades ranging between 1.4 and 3 ppm, where open pit mining is currently carried out, and
subvertical quartz-chalcedony zones dominate in the NE-part (Gugushvili, 2004; Gugushvili et al.,
2014), where gold was mined during the Bronze age (Hauptmann and Klein, 2009; Stöllner et al.,
2014).

The Beqtakari epithermal prospect

The Beqtakari gold and base metal prospect (Fig. 8) is hosted by felsic to intermediate volcanic rocks
of the Gansadami formation, belonging to the upper stratigraphic sequence of the Bolnisi district. It
consists of two distinct ore zones: (1) one silicified zone exposed on surface with local barite and
enriched in gold devoid of base metals, and (2) a second zone crosscut by drilling, consisting of a
lithologically-controlled, folded breccia sequence mineralized with base and precious metals. The main opaque minerals in the later ore zone are sphalerite, chalcopyrite, pyrite, barite, and subsidiary galena and tennantite-tetrahedrite, cementing the clasts of the breccia. Hydrothermal alteration along the ore bodies consists of interlayered illite/smectite, quartz, calcite and monmorillonite, grading out into distal propylitic alteration (Lavoie, 2015; Lavoie et al., 2015).

Collision and suture zones between Eurasia and Gondwana-derived terranes:

Major controls on Cenozoic porphyry and epithermal deposits

Abundant Cenozoic magmatic activity, including the Dalidag, Pambak, Meghri-Ordubad and Bargushat plutons (Fig. 2), can be traced along the collision and suture zones, which outline the accretionary boundary between the Gondwana-derived South Armenian block and the Jurassic-Cretaceous limit of the Eurasian margin (Figs 1, 2 and 3). This major collision zone, which partly coincides with the Miskhan-Zangezur or Tsaghqunk-Zangezur zone (e.g. Khair, 1975; Gamkrelidze, 1986; Melkonyan et al., 2000; Saintot et al., 2006) and the regional dextral active Pambak-Sevan-Sunik fault system (Fig. 2; Philip et al., 2001; Karakhanian et al., 2004), is the location of several significant mining districts, which are products of the complex Cenozoic subduction to collision/post-collision evolution during final convergence of Arabia and Eurasia. Most of this important collision and metallogenic zone is concealed beneath the widespread blanket of Miocene to Pleistocene sedimentary and volcanic rocks (Figs 1 and 2), but certainly constitutes an important exploration target for future discoveries.

The Meghri-Ordubad district: Neotethys subduction to post-collision metallogenic evolution

The Meghri-Ordubad district lies in the Zangezur-Ordubad region, astride the territories of southern Armenia and Nakhitchevan, and extends southwards into Iran (Fig. 5). Its eastern boundary is the NW-oriented, dextral strike-slip Khustup-Giratakh fault, which constitutes the major tectonic boundary between the Kapan block of the Eurasian margin and the Gondwana-derived South Armenian block (Fig. 5). The composite Meghri-Ordubad and Bargushat plutons and the associated porphyry Cu-Mo and epithermal deposits and prospects are mainly located in the central N-trending, uplifted Zangezur block, which is separated from the downthrown western Nakhitchevan block by the NW-oriented dextral strike-slip Ordubad-Salvard fault (Fig. 5; Tayan et al., 1976). The central, NS-oriented 3.5 to 4 km-wide Meghri-Tey graben-synclinal structure is the major ore deposit control (Tayan et al., 1976, 2005; Hovakimyan et al., 2015). With an area of about 1400 km², the composite Meghri-Ordubad and Bargushat intrusions form the largest single pluton cluster of the Lesser Caucasus. The Meghri-Ordubad and Bargushat plutons intrude Devonian to Paleocene sedimentary basement and cover rocks of the South Armenian block (Belov, 1968; Djrbashyan et al., 1976; Tayan et al., 1976).
Previous Rb-Sr isochron (Melkonyan et al., 2008, 2010), whole-rock K-Ar dating (Ghukasian et al., 2006), and recent U-Pb zircon ages combined with lithogeochemical data (Moritz et al., in press) have allowed us to subdivide the pluton assembly into two broad stages. Initial normal arc, calc-alkaline to high-K calc-alkaline magmatism, broadly between ~50 and ~40 Ma, resulted in the emplacement of gabbroic and dioritic to granodioritic-granitoid intrusions, coeval with extensive, Eocene subduction-related arc volcanism in Iran (e.g., Vincent et al., 2005; Allen and Armstrong, 2008; Ballato et al., 2011; Verdel et al., 2011). The subsequent Oligocene to Mio-Pliocene magmatic evolution coincided with the 40 to 25 Ma-old Arabian-Eurasian collision to post-collision tectonic evolution of the Caucasian-Zagros region (e.g., Vincent et al., 2005; Allen and Armstrong, 2008; Agard et al., 2011; Ballato et al., 2011; Verdel et al., 2011, McQuarrie and van Hinsberger, 2013). Early Oligocene high-K calc-alkaline to shoshonitic magmatism between ~38 and ~28 Ma produced gabbroic, gabbrodioritic, dioritic to monzonitic rocks, and late Oligocene to Miocene adakitic, high-K calc-alkaline magmatism between ~27 and ~21 Ma resulted in the emplacement of granite, granodiorite and quartz-monzonite (Moritz et al., in press; Rezeau et al., 2015).

The major ore deposits and prospects of the Zangezur-Ordubad region are porphyry Cu-Mo deposits (Table 1), and subsidiary epithermal prospects (Table 1) of lesser economic interest hosted by volcanic and plutonic rocks (Karamyan, 1978; Amiry, 1984; Babazadeh et al., 1990; Moritz et al., in press). The Cenozoic porphyry deposits of the Zangezur-Ordubad region are significantly enriched in Mo with respect to the older late Jurassic-early Cretaceous porphyry deposits emplaced along the Somkheto-Karabagh magmatic arc at Teghout and in the Gedabek district (Karamyan, 1978; Babazadeh et al., 1990). Re-Os molybdenite dating (Table 2) reveals two main porphyry events (Moritz et al., in press). The first porphyry Cu-Mo event is associated with Eocene subduction-related magmatism, and includes the Agarak deposit (44.2 ± 0.2 Ma), and the Hankasar (43.07 ± 0.18 and 43.14 ± 0.17 Ma), Aygedzor (42.62 ± 0.17 and 43.19 ± 0.17 Ma) and Dastakert prospects (40.22 ± 0.16 to 39.97 ± 0.16 Ma; Table 2; Fig. 5). One skarn at a contact with an Eocene intrusion at Qefashen yielded a Re-Os molybdenite age of 44.70 ± 0.18 Ma (Table 2). The second event is late Oligocene in age, coeval with collision to post-collision magmatism, and includes the producing world-class Kadjaran deposit (27.2 ± 0.1 to 26.43 ± 0.11 Ma), and the past producing Paragachay deposit (26.78 ± 0.11 Ma; Fig. 5). According to K-Ar ages published by Bagdasaryan et al. (1969), epithermal mineralization is associated with both Eocene and Oligocene magmatic activity, at 37.5 ± 0.5 and 38.0 ± 2.5 Ma at the Tey-Lichkvaz gold prospect, and at 24 ± 1 Ma at the Atkis polymetallic prospect near Kadjaran (Fig. 5). One molybdenite from an aplite in the Kadjaran area yielded a Re-Os age of 22.87 ± 0.09 Ma (Table 2). Together with the K-Ar age at Atkis, it suggests the presence of a third mineralizing event at the Oligocene-Miocene transition, which is supported by the epithermal overprint observed at the Kadjaran deposit (Hakovimyan et al., 2015). Moritz et al. (in press) concluded that Oligo-Miocene collision to post-collision magmatism and porphyry ore deposit formation were linked to asthenospheric upwelling along translithospheric, transpressional regional
 faults between the Gondwana-derived South Armenian block and the Kapan block, resulting in decompression melting of lithospheric mantle, metasomatised during Eocene subduction.

The evolution and setting of the Zangezur-Ordubad region of the Lesser Caucasus is comparable to the Himalayan geodynamic environment along the Asian segment of the Tethyan belt, where protracted Mesozoic to Cenozoic magmatism also resulted in the emplacement of successive generations of subduction-related and collision to post-collision porphyry Cu-Mo deposits, with some of the later being associated with large-scale, regional strike-slip faults (Hou et al., 2003, 2011, 2015).

Zod/Sotk: An ophiolite-hosted low-sulfidation epithermal system

The Zod/Sotk gold deposit is hosted by the Jurassic-Cretaceous Sevan-Akera ophiolite complex (Fig. 2; Galoyan et al., 2009; Rolland et al., 2009b, 2010). The deposit is located at the intersection of the ophiolite belt with a ~N-oriented regional fault (Konstantinov and Grushin, 1970; Levitan, 2008), immediately to the NE of the Tsaghkunk-Zangezur (or Miskhan-Zangezur) tectonic zone (Kozerenko, 2004), which borders the easternmost part of the South Armenian block (Khain, 1975; Gamkrelidze, 1986; Saintot et al., 2006). The ophiolite complex is intruded by stocks and ~NS- and ~EW-oriented dikes of quartz diorite, syenite-diorite and porphyritic rhyolite (Konstantinov and Grushin, 1970; Kozerenko, 2004; Levitan, 2008; Konstantinov et al., 2010).

The gold mineralization is controlled by EW- and NW-oriented structures, along which gabbro intrusions are affected by quartz-talc-carbonate alteration, and by the contact with serpentinized peridotite. The main ore bodies are 30 steeply dipping, mainly EW-oriented subparallel zones, including quartz veins with sulfide lenses, veinlet zones in quartz porphyry dikes, and quartz vein networks with disseminated sulfides (Melikyan, 1976; Amiryan, 1984; Kozerenko, 2004; Levitan, 2008). The six largest ore bodies are 10 to 40 m thick and constitute ~80% of the resources (Levitan, 2008). A pre-mineralization carbonate-talc alteration with subsidiary quartz and disseminated pyrite is comparable to listwaenite alteration (Spiridonov, 1991). An overprinting ore-related alteration stage consists of intense silicification, and sericite and pyrite (Kozerenko, 2004; Levitan, 2008). The complex mineralogical composition of the deposit is the result of several subsequent stages, with pre-ore quartz-chalcedony-pyrite, followed by a quartz-pyrite-marcasite-arsenopyrite-sphalerite assemblage containing gold, tellurides, sulfosalts and sulfoarsenides (Table 1). Late and post-ore mineral assemblages include quartz, stibnite, marcasite, and carbonate (including rhodochrosite). Realgar and orpiment have also been reported by Amiryan (1984), Kozerenko (2004), Levitan (2008) and Konstantinov et al. (2010). The host rock, alteration, gangue and ore mineral characteristics of the Zod/Sotk deposit are comparable to the McLaughlin low sulfidation deposit located in the northern Coast Range of California, U.S.A. (Sherlock et al., 1995).
All authors agree that dikes and stocks were overprinted by hydrothermal alteration during mineralization. The felsic intrusions are variably interpreted as late Eocene (Konstantinov and Grushin, 1970), Oligocene to early Miocene (Kozerenko, 2004), or Miocene (Levitan, 2008). This explains why mineralization is broadly interpreted as Oligocene to Miocene in age. However, such Neogene ages are at variance with respect to the K-Ar whole rock alteration age of $43 \pm 1.5\text{Ma}$ reported by Bagdasaryan et al. (1969). This leaves the interpretation open whether the formation of the Zod/Sotk deposit coincides with Eocene magmatism or is a product of Neogene collision to post-collision tectonic and magmatic evolution along the Lesser Caucasus.

The Amulsar prospect: A major new gold discovery in the Lesser Caucasus

The precious metal Amulsar prospect (Fig. 2; Table 1) is hosted by late Eocene to early Oligocene volcano-sedimentary rocks in southern Armenia (Lydian International, 2016). The host rocks consist of multiple layers of volcanogenic conglomerate and breccia, fining upward into volcanogenic and marly mudstone, and local limestone. Andesitic and dacitic volcanic and volcanioclastic rocks are present in the lower stratigraphic units. Small plutons and subvolcanic intrusions are located to the west of the prospect, and contain sub-economic galena-chalcopyrite veins. There is both a marked lithological and a structural control on mineralization. Gold and silver mineralization is hosted by silicified volcanic-sedimentary rocks interlayered with porphyritic andesite, interpreted as sills affected by argillic alteration. Different structures were identified, which explain the final anatomy of the prospect. Several thrusts produced a large dissected fault-fold structure. The main ore-controlling structure consists of a highly, and multiply folded central zone, where precious metal mineralization is associated with small-scale and variably oriented accommodation faults and fractures. Late oblique normal faults have segmented the ore prospect (Lydian International, 2016).

The mineralization consists of gold and hematite with silica within fractures, and breccia zones. Early alteration includes silicification and argillic alteration with subsidiary alunite, and strong silica-hematite alteration is coeval with gold introduction. The Amulsar prospect has typical high-to intermediate-sulfidation epithermal characteristics (argillic alteration, presence of alunite). Local intrusions were dated at 33-34 Ma by K-Ar by Bagdasaryan and Ghukiasian (1985), which suggests that the epithermal system may have formed during the Neogene, and may have been associated with the collision to post-collision evolution of the Lesser Caucasus.

The Meghradzor-Hangavan ore cluster: An equivalent of the Meghri-Ordubad district?

This mining district occurs along the major NW-oriented and NE-dipping Marmarik fault, which belongs to the northern extension of the regional Tsaghkunk-Zangezur (or Miskhan-Zangezur) tectonic zone, and the dextral Pambak-Sevan-Sunik fault system (Fig. 2). Eocene to Holocene
sedimentary and magmatic rocks outcrop in the eastern downthrown block along the Marmarik fault (Fig. 7), and the western uplifted block exposes the Jurassic intrusions, and basement rocks of the Tsaghkuniats massif (Shengelia et al., 2006; Hässig et al., 2015).

Meghradzor epithermal deposit

The Meghradzor deposit occurs within the vicinity of the major Eocene Pambak nepheline-bearing syenite (Fig. 7), and is hosted by middle Eocene andesite, tuff and tuff breccia intruded by post-late Eocene granite, granodiorite and alkaline syenite. The deposit was dated at 41.5 ± 1.0 Ma by K-Ar on sericite in altered host rocks (Bagdasaryan et al., 1969). It is a typical low-sulfidation epithermal system with various sulfides, tellurides and native gold in ~EW-oriented quartz-chalcedony-carbonate-sericite veins, and breccia zones (Table 1). The host rocks were silicified, and affected by sericite, pyrite and argillic alteration (Amiryan and Karapetyan, 1964).

Hanqavan Cu-Mo prospect

The Hanqavan prospect (Fig. 7) consists of a porphyry Cu-Mo stockwork hosted by a tonalite crosscut by quartz diorite and granodioritic dikes, which yielded a 33.3 ± 3 Ma age by whole rock K-Ar dating (Bagdasaryan et al., 1969). Re-Os molybdenite dating revealed an age of 29.34 ± 0.12 Ma for the porphyry Cu-Mo mineralization (Table 2). The mineralization contains various sulfides, tellurides and native gold, and is controlled by NE- and EW-oriented faults (Table 1).

The Eocene and Oligocene ages for the ore-forming events within this district are reminiscent of the different ore-forming pulses recognized in the Meghri-Ordubad mining district of the southernmost Lesser Caucasus (Fig. 2; Moritz et al., in press). It is likely, that the metal endowment of the Meghradzor-Hanqavan district is the result of repeated ore formation events controlled by the same major tectonic zone separating the Eurasian margin from the Gondwana-derived South Armenian block, extending from the southern to northern Lesser Caucasus, broadly coinciding with the Pambak-Sevan-Sunik fault zone (Fig. 2). Further studies should investigate whether a long-lived magmatic and tectonic evolution associated with translitospheric faults in a transpressional setting can explain pulsed ore formation in the Meghradzor-Hanqavan district.

The Adjara-Trialeti zone:

Eocene subduction arc and back-arc setting or post-collisional setting?

Knowledge about the metallogenic setting of the Adjara-Trialeti belt in western Georgia is still fragmentary (Fig. 1; Khomeriki and Tuskia, 2005; Gugushvili, 2015). It consists of a Cretaceous volcanic arc related to northward subduction of Tethyan oceanic crust and is considered as a lateral extension of the Eastern Pontides (Fig. 1; Adamia et al., 1977, 2010; Yilmaz et al., 2001). Late Eocene shoshonitic magmatism of this belt is controversial (Yilmaz et al., 2001), as it has been interpreted in terms of mature arc magmatism (Lordkipanidze et al., 1984), back-arc rifting (Adamia et al., 1977; Lordkipanidze et al., 1979; Gugushvili, 1980), or a post-collision setting (Yilmaz and Boztuğ, 1996).

The shoshonitic rocks are overlain by late Eocene calc-alkaline volcanic rocks, intruded by syenite,
monzonite, diorite and granodiorite (Gugushvili, 1980, 2015). Porphyry Cu-Au and polymetallic (Pb-Zn-Au) prospects (Merisi, Uchamba, Lashe, Gudna, Goma) are associated with the late Eocene calc-alkaline rocks (Gugushvili, 2015). Hydrothermal alteration consists of silicification and sericite, alunite, dickite, diasporite, and pyrite (Table 1; Gugushvili, 1980, 2015). Gold-bearing fault zones and hydrothermal breccia veins, capped by a silicic zone, have been described adjacent to a quartz diorite overprinted by quartz-sericite alteration at the new Kela project (Lydian International, 2016). The late Eocene magmatic and ore belt extends to the east into the Artvin-Bolnisi zone (Fig. 1), where polymetallic and gold-bearing occurrences are associated with Eocene diorite and monzonite stocks at Moshevani and Bezaklo (Bezhanishvili, 1969; Gugushvili, 2015).

The geodynamic setting of the porphyry and epithermal prospects of the Adjara-Trialeti zone is open to question, because precise geochronological data are missing. The middle to late Eocene tectonic environment is generally interpreted as extensional and related to the opening of the eastern Black Sea, followed by compression and uplift at the end of the Eocene and the early Oligocene (Adamia et al., 2011). Gugushvili (2015) interprets the late Eocene calc-alkaline magmatism, and the porphyry and epithermal deposits and prospects within a subduction setting. However, the only subduction zone that may have been active during the late Eocene was located far to the south beneath the Bitlis massif (Fig. 3c), since collision of the Eastern Anatolian platform with the Eurasian margin occurred as early as the late Cretaceous along the Somkheto-Karabagh belt (Rolland et al., 2009 a, b; Meijers et al., 2015), and between the Paleocene and early Eocene in the adjacent Eastern Pontides (Okay and Şahintürk, 1997; Peccerillo and Taylor, 1976; Şengör and Yilmaz, 1981; Topuz et al., 2011; Robertson et al., 2013). Therefore, a post-collisional setting is an alternative scenario, which should be tested for the late Eocene geological and metallogenic evolution of the Adjara-Trialeti belt.

Relationship of the ore deposit districts of the Lesser Caucasus with adjoining tectonic provinces

Correlation of the Lesser Caucasus with the Eastern Pontides

During the Jurassic and Cretaceous evolution of the Eurasian active margin, the Eastern Pontides along the Black Sea constituted the lateral western extension of the Artvin-Bolnisi zone and the Somkheto-Karabagh belt into Turkey (Fig. 1; Adamia et al., 1977; 2011; Okay and Şahintürk, 1997; Yilmaz et al., 2000, 2001). Volcanogenic massive sulfide, porphyry and epithermal ore deposit districts of the Eastern Pontides (Yigit, 2009; Delibas et al., 2016), and deposits and prospects of the Georgian Artvin-Bolnisi and Adjara-Trialeti zones are typically grouped into the same metallogenic belt (Moon et al., 2001; Kekelia et al., 2004). Volcanogenic massive sulfide deposits of the Eastern Pontides are interpreted as late Cretaceous (Yigit, 2009; Eyuboglu et al., 2014), whereas ages for porphyry emplacement range between early to late Cretaceous (Delibas et al., 2016) and late Cretaceous to Eocene (Yigit, 2009), and epithermal deposits between late Cretaceous and Eocene (Yigit, 2009).
The late Cretaceous metallogenic event recognized in the Eastern Pontides and in the Artvin-Bolnisi zone can be attributed to final subduction and closure of the northern branch of the Neotethys along the Turkish-Georgian segment of the Eurasian margin (Fig. 3c). There is a general consensus that the early Cenozoic magmatic activity in the Eastern Pontides was related to post-collisional crustal thickening and delamination after Paleocene-early Eocene collision of the Tauride–Anatolide platform and the Eurasian plate (Okay and Şahintürk, 1997; Peccherillo and Taylor, 1976; Şengör and Yilmaz, 1981; Topuz et al., 2011; Robertson et al., 2013). During the middle to late Eocene, the geodynamic setting of the Eastern Pontides was extensional and was related to the opening of the eastern Black Sea, followed by compression and uplift at the end of the Eocene and beginning of the Oligocene (Yilmaz and Boztuğ, 1996; Okay, 2008; Topuz et al., 2011; Kaygusuz and Öztürk, 2015), although some authors suggest that extension went on until the late Miocene (Temizel et al., 2012). In brief, the Eocene porphyry-epithermal deposits/prospects of the Eastern Pontides are likely post-collisional, an interpretation, which should be tested for the adjacent Georgian Adjara-Trialeti metallogenic belt.

An intriguing controversy is the vergence of subduction along the Eastern Pontides and the Adjara-Trialeti zone during the Cretaceous and the early Cenozoic. Indeed, a majority of studies accept north-verging subduction during the Cretaceous until collision of the Tauride–Anatolide platform with Eurasia (e.g., Adamia et al., 1977; 2011; Yilmaz and Boztuğ, 1996; Okay and Şahintürk, 1997; Okay, 2008; Yilmaz et al., 2000, 2001; Delibas et al., 2016). However, some studies advocate a south-verging subduction from the Cretaceous until the Eocene, which extended from the Eastern Pontides along the entire Lesser Caucasus down to the Caspian Sea (Eyuboglu et al., 2011, 2012, 2014). The correct answer to this controversy certainly has fundamental implications for future metallogenic and geodynamic interpretations of the Lesser Caucasus and the Eastern Pontides.

Correlation of the Lesser Caucasus and the Iranian belts during the Mesozoic

Correlation of the Jurassic-Cretaceous Somkheto-Karabagh belt and Kapan zone with the Iranian belts to the south is open to question. The NE-oriented Araks strike-slip fault constitutes a major regional stratigraphic and structural limit between the Alborz and the Lesser Caucasus (Figs 1, 2 and 5; Sosson et al., 2010). Berberian (1983) interpreted the Transcaucasus–Talysh–western Alborz belt as a single Mesozoic Andean-type magmatic arc, and thus he concluded that the Alborz mountains were the eastern continuation of the Somkheto–Karabagh arc and the Kapan zone. However, in contrast to the Lesser Caucasus, no Jurassic and early Cretaceous arc-magmatism is reported in the Alborz, and basaltic magmatism did not begin before the Barremian in the central Alborz (Wensink and Varekamp, 1980) and late Cretaceous in the western Alborz (Salavati, 2008). Moreover, a thick sedimentary basin like the late Triassic to early Jurassic Shemshak Formation in Iran with an up to 4,000-m thick package of siliciclastic sedimentary rocks (e.g., Fürsich et al., 2005) is unknown in the Lesser Caucasus (Sosson et al., 2010). Finally, while the Greater Caucasus, the Alborz and other Iranian
terrains were affected by the Triassic-Jurassic Cimmerian orogeny (Adamia et al., 1981, 2011; Saintot et al., 2006; Zanchi et al., 2006; Massodi et al., 2013), there is no evidence for such an orogenic phase along the Lesser Caucasus and the Eastern Pontides (Sosson et al, 2010; Topuz et al., 2013; Hässig et al., 2015). In brief, the Alborz and the Lesser Caucasus have contrasting Mesozoic tectonic, magmatic and sedimentary records, which also reflect different metallogenic evolutions, and explain the absence of ore districts with similar characteristics as Alaverdi, Kapan and Gedabek along the Alborz.

Correlation of the Lesser Caucasus and Cenozoic Iranian magmatic and metallogenic belts

Once the different Gondwana terranes (e.g., the South Armenian block) were accreted to the Eurasian margin by the Paleocene, middle Eocene magmatism and/or coeval deep-water clastic sedimentation took place across a vast area along the Tethyan belt, from southwest Turkey to Iran (Vincent et al., 2005). The Zangezur-Ordubad region of the southernmost Lesser Caucasus is the converging location of the major Cenozoic Iranian Urumieh-Dokhtar and Alborz magmatic and metallogenic belts (Fig. 1).

The Alborz, the adjoining Talysh range, and the Lesser Caucasus underwent similar Cenozoic tectonic evolutions. The Talysh and the Alborz range represent back-arc systems during the Eocene, and underwent inversion, uplift and transpression during the late Eocene to early Oligocene (Brunet et al., 2003; Vincent et al., 2005; Ballato et al., 2010; Verdel et al., 2011; Asiabanha and Foden, 2012). In the Lesser Caucasus, Paleocene to late-middle Eocene thick molasse series were deposited in a foreland basin to the southwest of the Somkheto-Karabagh belt, and subsequently underwent late-middle Eocene to Miocene shortening (Sosson et al., 2010).

Magas from the Iranian Urumieh-Dokhtar belt (Fig. 1) are characterized by predominantly normal arc and calc-alkaline compositions throughout the Cenozoic, except a few Miocene and Pliocene magmatic centers showing adakitic compositions attributed to slab melting or slab break-off following Arabia-Eurasia collision (Omrami et al., 2008; Shafiei et al., 2009; Yeganehfar et al., 2013). By contrast, the Alborz range and the southernmost Lesser Caucasus reveal broadly similar magmatic evolutions during the Cenozoic, evolving from dominantly normal arc, calc-alkaline compositions during the Eocene to adakitic and shoshonitic compositions sourced by a significant proportion of metasomatised lithospheric mantle during the Neogene (Moritz et al., in press). The Neogene shoshonitic and adakitic magmatism of the Alborz is attributed to decompression melting of metasomatised lithospheric mantle during extension and thinning of the crust (Aghazadeh et al., 2011; Castro et al., 2013). This contrasts with the transpressional geodynamic setting accompanied by crustal thickening during Neogene petrogenesis of shoshonitic and adakitic magmas as a consequence of decompressional melting of lower crust and lithospheric mantle in the southernmost Lesser Caucasus (Moritz et al., in press).

The ore deposit cluster of the Zangezur-Ordubad mining district of the southernmost Lesser Caucasus (Fig. 5) extends into the Iranian Cenozoic porphyry Cu-Mo Alborz/Arasbaran and Urumieh-
Dokhtar/Kerman belts (Fig. 1; Jamali et al., 2010; Aghazadeh et al., 2015; Simmonds and Moazzen, 2015). The Iranian porphyry deposits along these two belts are interpreted as post-collisional. The Iranian porphyry systems are Miocene in age, except two porphyry occurrences dated at 27-28 Ma (see Fig. 15 in Aghazadeh et al., 2015; Simmonds and Moazzen, 2015), which is comparable in age to the Oligocene Paragachay and Kadjaran deposits of the southernmost Lesser Caucasus (Fig. 5). In brief, while the Iranian and the Lesser Caucasian Cenozoic porphyry Cu-Mo metallogenic belts can be linked to each other, they reveal distinct differences based on recent interpretations. Although, all Neogene porphyry deposits are the product of collision to post-collision geodynamics, the main ones are Oligocene and related to transpressional tectonics in the southernmost Lesser Caucasus, whereas the Iranian porphyry deposits are predominantly Miocene (e.g. Sungun and Sar Cheshmeh; Aghazadeh et al., 2015; Hassanpour et al., 2015), and related to post-collisional extension and lithospheric mantle delamination (Shafiei et al., 2009; and see Fig. 16b in Aghazadeh et al., 2015). The north to south younging of the porphyry systems, from Eocene-Oligocene in the southernmost Lesser Caucasus to predominantly Miocene in Iran, coincides with the progressive north to south younging of Arabia-Eurasia collision (Agard et al., 2011).

Conclusions

The metallogenic setting of the Lesser Caucasus is the result of a long-lived geological evolution spanning from Jurassic nascent arc construction to Cenozoic post-collision. Our understanding about early ore formation during Jurassic arc construction along the Eurasian margin is certainly still fragmentary, especially because of poor geochronological constraints. The early magmatic evolution and its relationship with ore-forming events along the Somkheto-Karabagh belt and the Kapan zone need to be refined. The available data suggest that early metallogenic evolution was dominated by subaqueous magmatic-hydrothermal systems, VMS-style mineralization in a fore-arc environment or along the margins of a back-arc ocean located between the Eurasin margin and Gondwana-derived terranes. This metallogenic event apparently coincided broadly with a rearrangement of tectonic plates, resulting in steepening of the subducting plate during the middle to late Jurassic transition.

Late Jurassic and the early Cretaceous diachronous emplacement of typical porphyry Cu and high-sulfidation epithermal systems occurred along the Eurasian margin, once the arc was sufficiently thickened and sufficient fertile magmas were generated over time by MASH processes in the crust. Regional uplift and strong erosion is invoked to explain exhumation of the porphyry systems to surface; however it remains to be understood how the early Cretaceous epithermal systems were preserved despite such erosion processes. Low-sulfidation type epithermal deposits and transitional VMS-porphyry-epithermal systems were formed during migration of the magmatic arc into the hinterland, coinciding with progressive Late Cretaceous flattening of the subduction geometry, compression and uplift of the northern Lesser Caucasus belt in the Bolnisi-Artvin zone.
Collision of Gondwana-derived terranes with Eurasia resulted in closure of the northern branch of the Neotethys. This new plate geometry resulted in the rearrangement of subduction zones and set the stage for the next major metallogenic evolution of the Lesser Caucasus. Eocene porphyry Cu-Mo deposits and associated precious metal epithermal systems in the southernmost Lesser Caucasus were related to subduction-related magmatism. Final late Eocene-Oligocene accretion of Arabia with Eurasia resulted in Neogene collision to post-collision porphyry Cu-Mo deposit emplacement in the southernmost Lesser Caucasus, along major translithospheric faults. Further studies are required to constrain how other major low- and high-sulfidation epithermal deposits spatially associated with accretion and suture zones along the entire length of the Lesser Caucasus are either related to Eocene subduction-related magmatism or to Neogene collision/post-collision processes.

The northern geologic and metallogenic setting of the northern Lesser Caucasus is intimately linked to the Cretaceous and Cenozoic evolution of the Turkish Eastern Pontides. Therefore, further investigations should understand how Eocene ore systems of the Adjari-Trialeti belt are related to subduction or to post-collision processes. The Cenozoic magmatism and ore deposit belt of the southernmost Lesser Caucasus can be traced into the Cenozoic Iranian Urumieh-Dokhtar and Alborz belts. By contrast, the Alborz and the Eurasian margin exposed in the southernmost Lesser Caucasus record different Mesozoic tectonic, magmatic, sedimentary and metallogenic evolutions.

Acknowledgments

The research was supported by the Swiss National Science Foundation through the research grants 200020-121510, 200020-138130 and 200020-155928 and the SCOPES Joint Research Projects IB7620-118901 and IZ73Z0-128324. The authors would like to thank the staff of the Zangezur Copper-Molybdenum Combine, the Agarak Copper-Molybdenum Combine - GeoProMining for access to their mines, the Azerbaijan International Mining Company for logistical support, property access and sample handling in the Gedabek mining district and in Nakhtchevan, the Teghout mine and the Madneuli company. We thank the many students and colleagues from the University of Geneva, Switzerland (M. Calder, S. Gialli, P. Hemon, S. Hovakimyan, J. Lavoie, J. Mederer, H. Rezeau), and from Armenia, Azerbaijan and Georgia (Sh. Adamia, T. Beridze, S. Cleghorn, F. Hedjazi, Z. Kutelia, R. Migineishvili, M. Natsvlishvili, R. Overall, A. Rashad, M. Svanidze, A. Turner, A. Vardanyan, S. Zohrabyan), who participated since 2008 in field work and discussions, provided important pieces of information and logistical help, and helped in obtaining authorizations to have access to properties and mines described in this review. We would like to thank very much A.G. Tvalchrelidze, Y. Rolland and J. Richards for their critical reviews and comments.
References

Adamia, Sh., and Gujabidze, G., 2004, Geological map of Georgia 1:500,000 (on the basis of 1: 200,000 and 1:50,000 scale State Geological maps of Georgia), Department of Geology, Nodia Institute of Geophysics: http://www.ig-geophysics.ge/sakartvelo.html.

Eyuboglu, Y., Santosh, M., Yi, K., and Bektas, O., 2012, Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region: Lithos, v. 146-147, p. 218-232.

Gugushvili, V., 2015, Pre-collision and post-collisional metallogeny of gold-copper-base metal ores at the Bolnisi district: Phanerozoic evolution of the Tethys ocean: Published by Iv. Javakhishvili Tbilisi State University, A. Jalenidze Institute of Geology, 130 p.

Hässig, M., Rolland, Y., Sahakyan, L., Sosson, M., Galoyan, G., Avagyan, A., Bosch, D., and Müller, C., 2015, Multi-stage metamorphism in the South Armenian Block during the late Jurassic to early Cretaceous: Tectonics over south-dipping subduction of Northern branch of Neotethys: Journal of Asian Earth Sciences, v. 102, p. 4-23.

Komeriki, G., and Tuskia, T., 2005, Geological structures and ore deposits of Adjara: Publisher
Alioni, Batumi, Georgia, 111 p. (in Georgian).
p. 297-314.
system of the Zod gold-tellurium deposit (Armenia) according to isotopic data: Geochemistry
Kouzmanov, K., Moritz, R., von Quadt, A., Chiaradia, M., Peytcheva, I., Fontignie, D., Ramboz, C.,
and Bogdanov, K., 2009, Late Cretaceous porphyry Cu and epithermal Cu-Au association in the
Southern Panagyurishte District, Bulgaria: the paired Vlaykov Vruh and Elshitsa deposits:
Mineralium Deposita, v. 44, p. 611–646.
Kozerenko, S.V., 2004, Hydrothermal system of the Zod gold sulfide deposit, Armenia: Ore sources
and formation conditions: Geochemistry International, v. 42, p. 188-190.
Kusçu, I., Tosdal, R.M., Genclioglu-Kusçu, G., Friedman, R., and Ullrich, T.D., 2013, Late
Cretaceous to middle Eocene magmatism and metallogeny of a Portion of the Southeastern
Large, R.R., McPhie, J., Gemmell, J.B., Herrmann, W., and Davidson, G.J., 2001, The spectrum of ore
deposit types, volcanic environments, alteration halos, and related exploration vectors in
913–938.
Lavoie, J., 2015, Genetic constraints of the late-Cretaceous epithermal Beqtakari prospect, Bolnisi
mining district, Lesser Caucasus, Georgia: Unpublished MSc Thesis, University of Geneva,
Switzerland, 119 p.
Lavoie, J., Moritz, R., Popkhadze, N., and Spangenberg, J., 2015, The late Cretaceous epithermal
Beqtakari prospect; Bolnisi mining district, Georgia, Lesser Caucasus, in André-Mayer, A.-S.,
Cathelineau, M., Muchez, P., Pirard, E., and Sindern, S., eds, Mineral resources in a sustainable
Lawley, C.J.M., and Selby, D., 2012, Re-Os geochronology of quartz-enclosed ultrafine molybdenite:
Lordkipanidze M., Zakariadze G., and Popolitov E., 1979, Volcanic evolution of marginal and inter-
Lordkipanidze, M., Meliksetian, B., and Djarbashian, R., 1989, Mesozoic-Cenozoic magmatic
evolution of the Pontian-Crimean-Caucasus region: Mémoire de la Société Géologique de
Mamedov, A.O., 1983, Report about results of detailed exploration of copper-porphyry ores within
Kedabek-Bittibulak ore-bearing zone during 1979-1982: Unpublished report, Funds of the
Azerbaijan Geological Department, 144 p. (in Russian).
Standardizing Re-Os geochronology: A new molybdenite reference material (Henderson, USA)
and the stoichiometry of Os salts: Chemical Geology, v. 244, p. 74–87.
Markus, M.A., 2002, The formation of massive sulfide ores in black shales of the Eastern Caucasus:
ancient volcanic terranes: insights from the Mid-Paleozoic Peak Hill deposit, NSW: Society of

Vardanyan, A.V., and Zohrabyan, S.A., 2008, Explosive-injective breccia-conglomerates of the
Drmbov gold-copper pyrite deposit: Proceedings of the National Academy of Sciences of the
in Iran: Tectonics, v. 30, TC3008.
Vincent, S.J., Allen, M.B., Ismail-Zadeh, A.D., Flecker, R., Poland, K.A., and Simmons, M.D., 2005,
Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian
negative thermal ionization mass spectrometry: International Journal of Mass Spectrometry and
Yigit, O. 2009, Mineral deposits of
International Limited, United Kingdom, 84 p.
Wolfe, B., and Gossage, B., 2009, Technical report for the Kapan project, Kapan, Armenia:
Unpublished report, Perth, Australia, Coffey Mining Pty Ltd on behalf of Deno Gold Mining
Company CJSC, 270 p.
Yeganehfar, H., Reza Ghorbani, M., Shinjo, R., and Ghaderi, M., 2013, Magmatic and geodynamic
evolution of Urumieh–Dokhtar basic volcanism, Central Iran: major, trace element, isotopic,
Yigit, O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny: Implications for future
Yilmaz, S., and Boztuğ, D., 1996, Space and time relations of three plutonic phases in the Eastern
Yilmaz, A., Adamia, Sh., Chabukiani, A., Chkhouta, T., Erdogan, K., Tuzcu, S., and Karabilyoglu,
M., 2000, Structural correlation of the southern Transcaucasus (Georgia)-eastern Pontides
(Turkey), in Bozkurt, E., Winchester, J.A. and Piper, J.D.A., eds, Tectonics and magmatism in
171-182.
Along Turkish-Georgian Border: Mineral Research and Exploration Institute (MTA) of Turkey,
Problems of early Alpine evolution of the Lesser Caucasus as raised by geochemical data of
volcanic series of the island arc type: in The structure of seismic focal zones: Publishing House
Moscow, p. 150-167 (in Russian).
Zakariadze, G.S., Dilek, Y., Adamia, S.A., Oberhansli, R.E., Karpenko, S.F., Bazylev, B.A., and
Solov’eva, N., 2007, Geochemistry and geochronology of the Neoproterozoic Pan-African
Transcaucasian Massif (Republic of Georgia) and implications for island arc evolution of the
reconstructions: Tectonophysics, v. 611, p. 61–82.
Zohrabyan, S.A., 2007, About the problem of the genesis of pyrite deposits in Armenia: Proceedings
of the National Academy of Sciences of the Republic of Armenia, Earth Sciences, v. 60, p. 32-
36 (in Russian with English abstract).

Figure captions

Figure 1. Geological map from eastern Turkey to Iran highlighting the Lesser Caucasus area from Mederer et al. (2014), with additional information from Azizi and Moinevaziri (2009), Hässig et al. (2013a, b) and Zamani and Masson (2014). The Lesser Caucasus consists of the Somkheto-Karabagh belt along the Eurasian margin, the ophiolites of the Sevan-Akera suture zone and the South Armenian block. The South Armenian block and the Eastern Anatolian platform are of Gondwanian origin. Abbreviations of tectonic zones and faults: ABV - Artvin-Bolnisi volcanic-arc; ATB – Adjara-Trialeti belt; IAES – Izmir-Ankara-Erzinkan suture; KGF – Khustup-Giratagh fault.

Figure 2. Simplified geological map of the Lesser Caucasus (after Mederer et al., 2014), and major regional faults (from Philip et al., 2001; Karakhanian et al., 2004). Legend of the geological background same as in Figure 1. The location of the maps of the major ore districts discussed in this review include from north to south: the Bolnisi district (Fig. 8), the Alaverdi district (Fig. 4), the Toukhmanouk-Meghradzor-Hanqavan ore cluster (Fig. 7), the Gedabek district (Fig. 6a), and the Kapan and Zangezur-Ordubad districts (Fig. 5). Other deposits and prospects discussed in the review are indicated by the small yellow boxes. Abbreviations of the ore deposits and prospects (yellow boxes): A – Amulsar, C – Chovdar, G – Gosha, M – Mehmana, and Z – Zod/Sotk. Abbreviations of the regional faults and major Cenozoic plutons: AF – Akerin fault, AkhF – Akhourian fault, BP – Bargushat pluton, DP – Dalidag pluton, GF – Garni fault, GSF – Geltareshka-Sarjkhamich fault, KGF – Khustup-Giratagh fault, MOP – Meghri-Ordubad pluton, PP – Pambak pluton, PSSF – Pambak-Sevan-Sunik fault system, SSF? - sublatitudinal strike-slip fault (as suggested by Kazmin et al., 1986, Gabriyelyan et al., 1989, and Hässig et al., 2013a), TF – Tabriz fault.

Figure 3. Geodynamic reconstruction of the Tethyan belt centred on the Lesser Caucasus (LCR) for Callovian (a), Campanian (b), Lutetian (c), and Rupelian (d) times (modified from Barrier and Vrielynck, 2008). Additional information for the Callovian time (a) are from Hässig et al. (2013a) for the position of the northern spreading center, the intra-oceanic subduction zone, and from Melkonyan et al. (2000) and Hässig et al. (2015) for the interpretation of a south-verging subduction zone beneath SAB. The main ore-forming events are shown for the geodynamic stage that is the closest in age. Abbreviations: ABV - Artvin-Bolnisi volcanic-arc; AR – Alborz range; ATB – Adjara-Trialeti basin; BFB – Balkan fold-belt; BPM – Bitlis-Pütürge massif; EAP – Eastern Anatolian platform; GCB –
Greater Caucasus basin; GKF – Great Kevir fault; KOM – Khoy ophiolite massif; LCR – Lesser Caucasus range; LCV – Lesser Caucasus volcanic arc; MZT – Main Zagros thrust; PAM – Peri-Arabian massif; PoR – Pontides range; PoV – Pontides volcanic arc; SAB – South Armenian block; SAM – Sevan-Akera ophiolitic massif; SCB – South-Caspian basin; SkB – Sakarya block; SSB – Sanandaj-Sirjan block; TaP - Taurus platform; UDV – Urumieh-Dokhtar volcanic-arc; ZDF – Zagros deformation front (most abbreviations and domain names from Barrier and Vrielynck, 2008).

Figure 4. Simplified geology of the Alaverdi mining district (modified from Karapetyan et al., 1982; Mederer et al., 2014; Calder, 2104).

Figure 5. Simplified geological map of the Kapan and the Zangezur-Ordubad region, which includes the Kapan and the Meghri-Ordubad mining districts (after Karmyan et al., 1974; Tayan et al., 1976, 2005; Achikgiozyan et al., 1987; Babazadeh et al., 1990; Mederer et al., 2014). The Meghri-Ordubad district is hosted by the composite Meghri-Ordubad and Bargushat plutons included in the Gondwana-derived South Armenian block. The Kapan block with its mining district and the Shikahogh and Bartsravan prospects belongs to the Eurasian margin. The Khustup-Giratagh fault (KGF) is the major tectonic break between the Kapan block and the Zangezur-Ordubad region (South Armenian block).

Figure 6. a – Simplified geological map of the Gedabek mining district. b – Simplified geological map of the Chovdar mining district. c – Simplified geological map of the Gosha prospect (after Behre Dolbear, 2005).

Figure 7. Simplified geological map of the Toukhmanouk-Hanqavan-Meghradzor ore cluster.

Figure 8. Simplified geological map of the Bolnisi mining district (geology from Adamia and Gujabidze, 2004).
Main ore-forming events along the Lesser Caucasus:

Jurassic Cu-pyrite-polymetallic deposits of the Alaverdi and Kapan districts (a)

Subduction-related porphyry Cu and epithermal deposits during Jurassic-Cretaceous transition and Early Cretaceous at Teghout and Gedabek along Somkheto-Karabagh belt (a)

Late Jurassic Toukhmanouk deposit, South Armenian block (a)

Late Cretaceous Bolnisi mining district, Eurasian margin (b)

Cenozoic subduction to collision/post-collision porphyry Cu-Mo and epithermal deposits/prospects along suture and accretion zones (c-d)

Late Eocene porphyry and epithermal prospects of the Adjara-Trialeti belt (c-d)

Intra-oceanic subduction, south-verging subduction zone beneath SAB, back-arc basin and spreading center based on interpretations by Hässig et al. (2013a, 2015)
Pleistocene sedimentary deposits and Pliocene basalt

Eocene lava flows and tuff (basalt, andesite, rhyolite), sedimentary rocks, granodiorite and quartz-diorite

Late Cretaceous sand- and limestone and conglomerate

Late Jurassic tonalite, quartz-diorite and subvolcanic diorite and quartz-diorite

Late Jurassic rhyolite dike or sill (albitophyre)

Bathonian plagiogranite and subvolcanic quartz dacite

Late Jurassic lava flows, tuff and agglomerate (basalt basaltic andesite, andesite, dacite and rhyolite)

Bajocian dacite and rhyolite (keratophyre), ignimbrite, sedimentary rocks, including limestone, andesitic to basaltic pyroclastic rocks, minor lava flows, lava breccia and tuff

Fig. 4
A 25 km

Gondwana-derived terrane

Oligo-Miocene sedimentary and volcanic rocks

Composite Eocene to Miocene pluton

Eocene sedimentary and volcanic rocks

Paleocene sedimentary rocks

Early Cretaceous gabbro, diorite, quartz-diorite

Cretaceous basaltic, andesitic, dacitic, rhyodacitic lava

Jurassic andesitic, dacitic, rhyolitic lava, breccia lava, tuff and hyaloclastite

Proterozoic basement rocks

Regional fault

Cu, Cu-Au and polymetallic veins and stockwork-type deposits of Kapan district
Porphyry-type/associated prospect
Porphyry Cu-Mo deposit/prospect
Gold-base metal epithermal prospect
Deposits and prospects:
A: Agarak (MOP)
AP: Aygurt and Piyazbashi (MOP)
At: Aitkis (MOP)
Ay: Aygedzor (MOP)
B: Bartsravan (Kapan)
Ce: Centralni East (Kapan)
Cw: Centralni West (Kapan)
D: Dastakert (BP)
Di: Diakhchay (MOP)
H: Hankasar (MOP)
K: Kadjaran (MOP)
L: Lichk (MOP)
M: Misdag (MOP)
PG: Paragachay and Qapujuk (MOP)
S: Shahumyan (Kapan)
Sh: Shikahogh (Kapan)
TL: Tey-Lichkvaz (MOP)

BP: Bargushat pluton
MOP: Meghri-Ordubad pluton
KGF: Khustup-Giratagh fault
OSF: Ordubad-Salvard fault

Fig. 5
Quaternary, alluvial
Kimmeridgian quartz-diorite and diorite, partly porphyritic
Kimmeridgian granodiorite and quartz-diorite
Callovian-Oxfordian pyroclastic rocks
Bathonian subvolcanic diabase, gabbro
Bathonian andesitic volcanic and pyroclastic rocks
Bajocian subvolcanic dacite, rhyodacite, rhyolite
Late Bajocian rhyolite, porphyritic rhyodacite, rhyodacitic tuff and tuff breccia
Early Bajocian porphyritic andesite, tuff and tuff breccia
Early Bajocian plagiogranite
Bathonian andesitic volcanic and pyroclastic rocks
Early Bathonian andesitic volcanic and pyroclastic rocks
Late Bajocian subvolcanic quartz-porphyry and quartz-keratophyre
Bathonian subvolcanic diorite, quartz-diorite, gabbro-diorite
Little Bajocian subvolcanic dacite, rhyolite, porphyritic rhyodacite, albite, albiphore
Felsic dike (porphyritic diorite and quartz-diorite, albite, albitophyre)
Mafic dike (plagioclase andesite, diabase, porphyritic gabbro)
Porphyry Cu prospect
Au epithermal prospect or deposit
Base metal epithermal prospect
Prospect, uncertain ore type
Waste dumps
Quaternary, alluvial
Silicified rock
Late steeply dipping gold-bearing zone filled with quartz, kaolinite, pyrite, base-metal sulfides and tellurides
Early, oxidized, steeply dipping zone filled with quartz, kaolinite, pyrite, base-metal sulfides and tellurides
Late Bajocian subvolcanic rhyolite and rhyodacite
Early Bajocian andesite lava, lava breccia and tuff, partly silicified, with disseminated pyrite and subsidiary kaolinite
Hydrothermal alteration with silicification, kaolinite and limonite
Intensively silicified rocks, with sericite, kaolinite, and pyrite
Fault
Steadily dipping barite veins
Early Bajocian andesite lava, lava breccia and tuff, partly silicified, with disseminated pyrite and subsidiary kaolinite
Fig. 6
Pleistocene-Holocene trachybasalt, trachyandesite, andesite, tuff and sedimentary deposits

Late Pliocene-Pleistocene basaltic andesite, andesite, and volcanogenic sedimentary rocks

Late Miocene-Early Pliocene andesitic tuff, rhyolite, perlite, obsidian, pumice sandstone, argillic rocks

Post-late Eocene granite and granodiorite

Post-late Eocene alkaline syenite, pseudoleucite syenite and nepheline syenite

Post-late Eocene porphyritic granite and syenogranite

Late Eocene diorite, quartz diorite, quartz syenite, monzonite, syenogranite, gabbro, diorite, tonalite, granodiorite and granite

Late Eocene basalt, basaltic andesite, andesite, trachyandesite, trachyte, tephrite, rhyolite and pyroclastic rocks (Pambak suite)

Middle Eocene basaltic andesite, andesite, dacite and rhyolite and tuff breccia and sandstone (Basum and Shirak suites)

Early Eocene basaltic andesite, andesite, dacite, lava breccia, and sedimentary rocks

Late Cretaceous limestone, marl, sandstone and conglomerate

Early Cretaceous diabase, basalt, basaltic andesite, pyroclastic rocks, siltstone, mudstone

Late Jurassic diorite, gabbro-diorite, granodiorite, quartz diorite, tonalite, leucogranite

Neo-Proterozoic trondhjemite, plagiogranite, albite, granite, gneiss, serpentine, gabbro

Neo-Proterozoic metamorphic basement rocks (Arzakan and Hanqvan suites)

Fault

Fig. 7
Bajocian andesite, dacite
Early Jurassic, shallow marine clastic sedimentary rocks
Proterozoic-Paleozoic basement rocks: gneiss-migmatite, schist, diorite, granite

Middle Eocene sub-alkaline to calc-alkaline basalt, andesite, dacite

Jurassic granite, granodiorite
Bathonian marine clastic sedimentary rocks

Campanian-Maastrichtian calc-alkaline basalt, andesite, dacite, and rhyolite

Cenomanian-Campanian calc-alkaline basalt, andesite, dacite, and rhyolite

Late Cretaceous dacite, rhyolite
Loki massif

Artvin-Bolnisi zone

Khrami massif

Major base metal and gold prospect and deposit
Base metal and gold occurrence

Oligo-Miocene euxinic sedimentary rock
Plio-Quaternary calc-alkaline continental basalt

Middle-late Eocene turbidite
Middle Eocene sub-alkaline to calc-alkaline basalt, andesite, dacite
Paleocene-Early Eocene turbidite

Cenozoic trachyte-rhyolite

Late Cretaceous diorite, quartz-diorite, plagiogranite

Fig. 8
Somkheto-Karabagh belt (Eurasian margin) - Alaverdi mining district (see Figure 4)

<table>
<thead>
<tr>
<th>Deposit name</th>
<th>Deposit type</th>
<th>Reserves-ore grade</th>
<th>Status</th>
<th>Age</th>
<th>Host rock geology</th>
<th>Main mineralogy</th>
<th>Alteration</th>
<th>Ore body geometry</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaverdi</td>
<td>Cu-pyrite bodies and polymetallic veins</td>
<td>1.2Mt @ 5.6% Cu, 0.12 g/t Au, 5.8 g/t Ag (indicated- inferred resources)</td>
<td>Closed</td>
<td>135 ± 6Ma, 142 ± 6Ma (K-Ar sericite age of altered host rock)</td>
<td>Bajocian dactic tuff and andesitic agglomerate</td>
<td>Chalcopyrite, pyrite, sphalerite, bornite, chalocite, and subsidiary galena, tennantite, stannite, emplastic, argentite, native gold and silver, electrum arsenopyrite. Quartz, sericite, chalcopyrite, hematite, galena, and minor bornite, chalocite, pyrite, pyrite, tellurides, digenite, bornite, chalcocite, and minor luzonite, galena, and chalcopyrite</td>
<td>Silification, sericite, chlorite, carbonate, pyrite, hematite</td>
<td>Structurally-controlled by NWW- and NNE-oriented faults, and lithological contacts. Subvertical veins in deeper part; stockwork and subhorizontal, stratiform lenses in shallower part.</td>
<td>Nalbandyan (1968), Khatchaturyan (1977), and Zohrabyan and Melkonyan (1999). Ages by Bagdasaryan et al. (1969)</td>
</tr>
<tr>
<td>Shamlugh</td>
<td>Cu-pyrite bodies and polymetallic veins</td>
<td>4 Mt @ 3.53% Cu - 1.70% Pb - 4.96% Zn - 1.03 g/t Au - 8.1 g/t Ag (Proven-probable reserves and indicated resources)</td>
<td>Open pit and underground mining</td>
<td>Maximum age: 155 ± 1 Ma (U-Pb zircon age of altered rhyolite sill). 142 ± 6 Ma and 161 ± 4 Ma (K-Ar whole rock and sericite ages of altered host rock)</td>
<td>Bajocian basaltic andesitic and dactic tuff and lava breccia, overlain by a rhyolite sill (named albitophyre)</td>
<td>Chalcopyrite, pyrite, sphalerite, bornite, chalocite, and subsidiary galena, tennantite, stannite, emplastic, argentite, native gold and silver, electrum marcasite. Quartz, sericite, chalcopyrite, hematite, galena, and minor bornite, chalocite, pyrite, pyrite, tellurides, digenite, bornite, chalcocite, and minor luzonite, galena, and chalcopyrite</td>
<td>Silification, sericite, chlorite, carbonate, pyrite, pyrrhotite, dickite</td>
<td>Structurally-controlled by NWW- and NNE-oriented faults, and lithological contacts. Subvertical veins in deeper part; stockwork and subhorizontal, stratiform lenses in shallower part.</td>
<td>Nalbandyan (1968), Khatchaturyan (1977), and Zohrabyan and Melkonyan (1999). Ages by Bagdasaryan et al. (1969) and Calder (2014)</td>
</tr>
<tr>
<td>Akhtala</td>
<td>Polymetallic lenses and veins</td>
<td>1.2 Mt @ 0.58% Cu - 1.67% Pb - 4.48% Zn - 1.3 g/t Au - 104 g/t Ag (Proven-probable reserves and indicated resources)</td>
<td>Closed</td>
<td>141 ± 5 Ma and 150 ± 5.5 Ma (K-Ar whole rock age of altered host rock)</td>
<td>Bajocian subvolcanic quartz-dacite, andesite and basalt</td>
<td>Galena, sphalerite, chalcopyrite, tennantite, tetrahedrite, and subsidiary bornite, chalcoite, marcasite, cassiterite, argentite, electrum, native gold and silver. Banne, quartz, sericite, chalcopyrite, hematite, galena, and minor bornite, chalocite, pyrite, pyrite, tellurides, digenite, bornite, copper, and minor luzonite, galena, and chalcopyrite</td>
<td>Silification, sericite, chlorite, carbonate, pyrite, pyrrhotite, dickite</td>
<td>Stockwork and subhorizontal, stratiform lenses. Intersection of dikes and NE-oriented fractures with NS-oriented faults. Eastern-oriented veins</td>
<td>Paronikyan (1962), Nalbandyan (1968), and Zohrabyan and Melkonyan (1999). Ages by Bagdasaryan et al. (1969)</td>
</tr>
<tr>
<td>Teghout</td>
<td>Porphyry Cu-(Mo)</td>
<td>460 Mt @ 0.34% Cu - 0.01% Mo - 0.01 g/t Au</td>
<td>Open pit mining since 2015</td>
<td>145.5 ± 0.5 Ma and 149 ± 3 Ma (K-Ar sericite age) and 145.85 ± 0.59 Ma (Rb-Os molybdenite age)</td>
<td>Middle-late Jurassic polyphase intrusion, including quartz-diorite, biotite-hornblende tonalite and leucogranite</td>
<td>Chalcopyrite, pyrite, molybdenite; subsidiary sphalerite, galena, bornite, tetrahedrite, magnetite, chalcoite, covellite, and rare enargite, luzonite and native gold. Quartz, anhydrite, carbonates, sericite</td>
<td>Quartz, sericite, pyrite, subsidiary kaolinite</td>
<td>Stockwork, disseminated</td>
<td>Amiryan et al. (1987), and Melkonyan and Ghuksanian (2004). Ages: Paronikyan and Ghuksanian (1974) and this study (Table 2)</td>
</tr>
</tbody>
</table>

Kapan zone (Eurasian margin) - Kapan mining district (see Figure 5)

<table>
<thead>
<tr>
<th>Deposit name</th>
<th>Deposit type</th>
<th>Reserves-ore grade</th>
<th>Status</th>
<th>Age</th>
<th>Host rock geology</th>
<th>Main mineralogy</th>
<th>Alteration</th>
<th>Ore body geometry</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shahumyan</td>
<td>Polymetallic veins</td>
<td>2006-2011: 1.8 Mt @ 1.93 ppm Au, 29.8 ppm Ag, 0.24% Cu and 1.52% Zn; Open pit potential: 36.3 Mt @ 3.13 g/t AuEq or 335 Mt @ 1.19 g/t AuEq</td>
<td>Underground mining</td>
<td>156.14 ± 0.79 Ma (Ar/Ar alunite). 140 ± 3 Ma and 149 ± 1 Ma (K-Ar whole rock age of altered host rock)</td>
<td>Middle Jurassic subvolcanic quartz-dacite, andesite and injection breccia</td>
<td>Pyrite, chalcopyrite, sphalerite, galena, fahlore, tellurides, arsenite, digenite, bornite, chalcoite, native gold and silver. Gangue: quartz, carbonate, carbonate, quartz and kaolinite.</td>
<td>Phyllic alteration, and advanced argillic (alunite), and hematite in uppermost part</td>
<td>Subvertical EW-oriented veins</td>
<td>Maatveev et al. (2006), Mederer et al. (2013), Mederer et al. (2014), and Achikgiozyan et al. (1987). Ages from Bagdasaryan et al. (1969) and Mederer et al. (2014)</td>
</tr>
<tr>
<td>Centralni West</td>
<td>Cu sulfide-quartz veins and stockwork</td>
<td>Estimated 30.000 t mined since 1843 @ 1.16% Cu (both Centralni deposits together)</td>
<td>Underground operation closed 2008</td>
<td>161.78 ± 0.79 Ma (Ar/Ar sericite)</td>
<td>Middle Jurassic breccia lava, hydro-clastite, lava flows</td>
<td>Chalcopyrite, pyrite, and minor galena and fahlore. Gangue: quartz and carbonates.</td>
<td>Chlorite, quartz, epidote and carbonate alteration. Sericite close to ore</td>
<td>EW-oriented veins</td>
<td>Mederer (2013), Mederer et al. (2014), and Achikgiozyan et al. (1987). Age from Mederer et al. (2014)</td>
</tr>
<tr>
<td>Centralni East</td>
<td>Cu-Au, sulfide stockwork</td>
<td>see above</td>
<td>Underground and open pit abandoned in 2004</td>
<td>144.7 ± 4.2 Ma (Re-Os pyrite isochron)</td>
<td>Middle Jurassic lava flows and tuff</td>
<td>Chalcopyrite, colusite, fahlore, minor andonite galena, galena, enargite, covellite, tennantite, arsenite, digenite, bornite, chalcoite, native gold and silver. Gangue: quartz, carbonate, and minor galena, fahlore, andonite galena, galena, and minor bornite, chalcoite, pyrite, pyrite, tellurides</td>
<td>Arillic alteration and silification, diasporre, dickite</td>
<td>Stockwork</td>
<td>Mederer (2013), Mederer et al. (2014), and Achikgiozyan et al. (1987). Age from Mederer et al. (2014)</td>
</tr>
<tr>
<td>Deposit name</td>
<td>Deposit type</td>
<td>Reserves-ore grade</td>
<td>Status</td>
<td>Age</td>
<td>Host rock geology</td>
<td>Main mineralogy</td>
<td>Alteration</td>
<td>Ore body geometry</td>
<td>References</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------</td>
<td>-----</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Somkheto-Karabagh belt (Eurasian margin) - Gedabek mining district, Gosha prospect and Chovdar deposit (Figure 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gosha</td>
<td>High-sulfidation epithermal</td>
<td>7.4 Mt @ 4.7 g/t Au - 6.33 g/t Ag (Proven-probable reserves and indicated-inferred resources)</td>
<td>Prospect</td>
<td>Uncertain, possibly late Jurassic or Early Cretaceous</td>
<td>Bajocian andesite intruded by rhodacitic subvolcanic intrusion</td>
<td>Gold with pyrite and tellurides, lesser amounts of chalcopyrite, arsenopyrite, base-metal sulphides and sulphosalts</td>
<td>Silicification, disseminated pyrite, kaolinite</td>
<td>Orthogonal system of NS and EW subvertical kaolinite-pyrite-quartz veins. Better ore grades in crosscutting areas of both structures</td>
<td>Babazadeh et al. (2003), Behre Dolbear (2005)</td>
</tr>
<tr>
<td>Djaygir</td>
<td>Porphyry Cu</td>
<td>117 Mt @ 0.354% Cu (Indicated to inferred resources)</td>
<td>Prospect</td>
<td>Early Cretaceous</td>
<td>Late Jurassic quartz-diorite intruded in Bajocian tonalite, andesitic to rhodacitic tuff and tuff-sandstone</td>
<td>Pyrite, chalcopyrite, and subsidiary molybdenite</td>
<td>Quartz, sericite, pyrite, kaolinite, chloride</td>
<td>Disseminated and stockwork</td>
<td></td>
</tr>
<tr>
<td>Kharkhar</td>
<td>Porphyry Cu</td>
<td>22.6 Mt @ 0.367% Cu - 0.003% Mo - 0.2 g/t Au - 2-4 g/t Ag (Indicated to inferred resources)</td>
<td>Prospect</td>
<td>Early Cretaceous</td>
<td>Late Jurassic quartz-diorite intruded in Bajocian tonalite</td>
<td>Pyrite, chalcopyrite, bornite, covellite, chalcocite, molybdenite</td>
<td>Quartz, sericite, pyrite, kaolinite</td>
<td>Disseminated and stockwork</td>
<td>Babazadeh et al. (1990), Age from this study (Table 2)</td>
</tr>
<tr>
<td>Garadagh</td>
<td>Porphyry Cu</td>
<td>41.5 Mt @ 0.43% Cu - 0.002% Mo (Indicated to inferred resources)</td>
<td>Prospect</td>
<td>Early Cretaceous</td>
<td>Late Jurassic quartz-diorite intruded in Bajocian tonalite</td>
<td>Pyrite, chalcopyrite, bornite, covellite, chalcocite, molybdenite</td>
<td>Quartz, sericite, pyrite, kaolinite</td>
<td>Disseminated and stockwork</td>
<td>Babazadeh et al. (1990)</td>
</tr>
<tr>
<td>Bitti-Bulakh</td>
<td>High-sulfidation epithermal</td>
<td>Past production: 16,000 t @ 2% Cu. Unknown reserves and resources: 0.33 g/t Au - 0.5 g/t Ag - 1.07% Cu</td>
<td>Closed</td>
<td>Early Cretaceous</td>
<td>Bajocian andesite and tuff, intruded by plagio granite</td>
<td>Pyrite, enargite, barite, chalcopyrite, famatinite, subsidiary fahlore, sphalerite, galena, covellite</td>
<td>Silicification, sericite, argillic alteration (kaolinite)</td>
<td>Disseminated and lenses</td>
<td>Butenko (1947)</td>
</tr>
<tr>
<td>Novogorelovka</td>
<td>Epithermal polymetallic</td>
<td>Unknown reserves and resources: 0.53 g/t Au - 0.5 g/t Ag - 1.07% Cu</td>
<td>Prospect</td>
<td>Early Cretaceous</td>
<td>Early Bajocian andesite and late Jurassic subvolcanic quartz-dacite intrusion</td>
<td>Fe-rich sphalerite, chalcopyrite, pyrite</td>
<td>Silicification, sericite, argillic alteration (kaolinite)</td>
<td>Lens-shaped orebody</td>
<td>Mamedov (1983)</td>
</tr>
<tr>
<td>Maarif</td>
<td>Low- to intermediate-high-sulfidation epithermal</td>
<td>32 Mt @ 0.51-0.72 % Cu - 0.01% Mo - 0.5-2 g/t Au (Probable reserves and indicated-inferred resources)</td>
<td>Prospect</td>
<td>Early Cretaceous</td>
<td>Bajocian andesitic porphyry intruded by subvolcanic rhyolite</td>
<td>Pyrite-chalcopyrite-molybdenite</td>
<td>Silicification, disseminated pyrite, chlorite</td>
<td>Disseminated gold ores, vein-type and semi-massive to massive pyrite lenses</td>
<td>Mamedov (1983), Behre Dolbear (2005), Hemon et al. (2012) and Hemon (2013)</td>
</tr>
<tr>
<td>Gedabek</td>
<td>Low- to intermediate-high-sulfidation epithermal</td>
<td>20.3 Mt @ 1.145 g/t Au - 0.29% Cu - 9.46 g/t Ag (Proven and probable reserves, and indicated-inferred resources)</td>
<td>In production</td>
<td>Early Cretaceous</td>
<td>Highly altered quartz porphyry (dacite?) intruding Jurassic andesitic volcanic and volcaniclastic rocks</td>
<td>Pyrite, chalcopyrite, sphalerite, stephanite, barite, native gold, bornite, chalcoite, covellite</td>
<td>Silicification, sericite, pyrite, argillic alteration</td>
<td>Orthogonal system of NS and EW subvertical kaolinite-pyrite-quartz veins. Better ore grades in crosscutting areas of both structures</td>
<td>Babazadeh et al. (2003), Behre Dolbear (2005), Hemon et al. (2012) and Hemon (2013)</td>
</tr>
<tr>
<td>Chovdar</td>
<td>High-sulfidation epithermal</td>
<td>18.08 Mt @ 2.19 g/t Au - 16.72 g/t Ag (Probable reserves and indicated-inferred resources)</td>
<td>In production</td>
<td>Uncertain, possibly late Jurassic or Early Cretaceous</td>
<td>Bajocian tuff, andesite, dacite and rhyolite</td>
<td>Pyrite, gold, enargite, tennantite-tetrahedrite, barite</td>
<td>Silicification. Vuggy quartz, argillic alteration (kaolinite)</td>
<td>Disseminated, vein-type and semi-massive to massive pyrite lenses</td>
<td>Mussev and Shirinov (2002)</td>
</tr>
</tbody>
</table>

Somkheto-Karabagh belt (Eurasian margin) - Mehmana mining district (see location in Figure 2)

<table>
<thead>
<tr>
<th>Deposit name</th>
<th>Deposit type</th>
<th>Reserves-ore grade</th>
<th>Status</th>
<th>Age</th>
<th>Host rock geology</th>
<th>Main mineralogy</th>
<th>Alteration</th>
<th>Ore body geometry</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizilbulak/ Drmbon</td>
<td>Cu-Au, epithermal?</td>
<td>3.3 Mt @ 3.9 g/t Au - 5.1 g/t Ag - 1.3%Cu (indicated-inferred resources)</td>
<td>Closed since 2014</td>
<td>Post-Oxfordian</td>
<td>Bajocian basaltic andesite to dacite</td>
<td>Pyrite, chalcopyrite, native gold, hematite, and subsidiary sphalerite, galena, bornite and tennantite-tetrahedrite</td>
<td>Silicification, sericite, carbonate, chlorite, hematite</td>
<td>Lens-shaped, stockwork and disseminated</td>
<td>Agakhishiev et al. (1989), Khachyan (1993), Vardanyan (2008) and Mederer et al. (2014)</td>
</tr>
<tr>
<td>Deposit name</td>
<td>Deposit type</td>
<td>Reserves-ore grade</td>
<td>Status</td>
<td>Age</td>
<td>Host rock geology</td>
<td>Main mineralogy</td>
<td>Alteration</td>
<td>Ore body geometry</td>
<td>References</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-----</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Madneuli</td>
<td>Transitional VMS-porphyry-epithermal</td>
<td>Cu-polymetallic ore: 30 Mt @ 0.35% Cu - 0.4 g/t Au. Epithermal ore: 8 Mt @ 0.55 g/t Au (Proven and probable reserves)</td>
<td>Open pit mining</td>
<td>Late Cretaceous</td>
<td>Late Cretaceous tuff, and volcanic and sedimentary rocks. U-Pb zircon ages of dikes crosscutting Mashevera unit: 86.6-87.1 Ma.</td>
<td>Pyrite, chalcopyrite, sphalerite, barite, galena, tennantite, tetrahedrite, hematite, tellurides, sulfobismuthides, native gold and silver, subsidiary enargite, chalcocite, covellite and bornite</td>
<td>Silicification, sericite, chloride, Stockwork, stratiform massive sulphide lenses, breccia pipes, veins</td>
<td>Gugushvili et al. (2001), Migneishvili (2002, 2005), Giali et al. (2012), Giali (2013), Paskhazee et al. (2014), Gugushvili (2015). U-Pb ages from Moritz et al. (2012).</td>
<td></td>
</tr>
<tr>
<td>Sakdrisi</td>
<td>Low-sulfidation epithermal</td>
<td>Cu-Au ore: 4 Mt @ 0.59% Cu, 1.06 g/t Au; Epithermal: 8.6 Mt @ 1.77 g/t Au (Proven and probable reserves)</td>
<td>Open pit mining</td>
<td>Late Cretaceous</td>
<td>Late Cretaceous tuff, and volcanic and volcanoclastic rocks</td>
<td>Base metal sulfides, pyrite, native gold, barse, quartz, chalcedony, hematite</td>
<td>Silicification, argillic alteration (illite, montmorillonite, kaolinite)</td>
<td>Disseminated, breccia pipes and stockwork</td>
<td>Gugushvili (2004, 2015), and Gugushvili et al. (2014)</td>
</tr>
<tr>
<td>Beqtaqar</td>
<td>Low-sulfidation epithermal</td>
<td>9.4 Mt @ 2.93 g/t Au - 33 g/t Ag - 1.5% Zn - 0.75% Pb</td>
<td>In development</td>
<td>Late Cretaceous</td>
<td>Campanian felsic to intermediate calc-alkaline andesitic-rydolitic volcanic rocks</td>
<td>Sphalerite, chalcopyrite, galena, pyrite, tennantite, tetrahedrite, marcasite</td>
<td>Silicification, argillic alteration (illite, montmorillonite)</td>
<td>Disseminated precious metal zone in silicified rocks and breccia, with host rocks clasts cemented by ore minerals</td>
<td>Lavoie (2015) and Lavoie et al. (2015)</td>
</tr>
<tr>
<td>Dagkasaman</td>
<td>Precious metal vein-type</td>
<td>0.7 Mt @ 4.38 g/t Au - 18.64 g/t Ag (Probable reserves)</td>
<td>In development</td>
<td>Cretaceous?</td>
<td>Late Cretaceous tuff and volcanoclastic rocks</td>
<td>Gold, sphalerite, and other base metal sulfides</td>
<td>Silicification, albitization</td>
<td>Veins and stockwork</td>
<td>Table 1</td>
</tr>
</tbody>
</table>

Miskhan/Tsaghkun-Zangezor-Ordubad zone: Meghri-Ordubad mining district (Figure 5)

<table>
<thead>
<tr>
<th>Deposit name</th>
<th>Deposit type</th>
<th>Reserves-ore grade</th>
<th>Status</th>
<th>Age</th>
<th>Host rock geology</th>
<th>Main mineralogy</th>
<th>Alteration</th>
<th>Ore body geometry</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dastakert</td>
<td>Porphyry Cu-Mo</td>
<td>9.6 Mt @ 0.95% Cu - 0.043% Mo</td>
<td>In development</td>
<td>40.22 ± 0.16 Ma to 39.97 ± 0.16 Ma (Molybdenite Re-Os age)</td>
<td>Eocene granodiorite and andesite-basaltic</td>
<td>Molybdenite, chalcopyrite, pyrite, bornite, chalcocite, covellite, enargite, enargite, luzonite, magnetite, gold, pyrrhotite, sphalerite, tetrahedrite / tennantite, alabandite.</td>
<td>Silicification, sericite, chloride, Stockwork and breccia (ore minerals in matrix of breccia)</td>
<td>NW-oriented fracture zone.</td>
<td>Karamyan (1978), Pilyan (1975). Ages from this study (Table 2)</td>
</tr>
<tr>
<td>Hankasar</td>
<td>Porphyry Cu-Mo</td>
<td>10.4 Mt @ 0.45% Cu - 0.038% Mo</td>
<td>In development</td>
<td>43.14 ± 0.17 Ma (Molybdenite Re-Os age)</td>
<td>Late Eocene granodiorite and quartz-diorite</td>
<td>Molybdenite, chalcopyrite, pyrite, galena, sphalerite. Gangue: quartz, sericite, chlorine, carbonates, K-feldspar, biotite.</td>
<td>Silicification, sericite, carbonates</td>
<td>Veins</td>
<td>Karamyan (1978). Ages from this study (Table 2)</td>
</tr>
<tr>
<td>Paragachay</td>
<td>Porphyry Cu-Mo</td>
<td>Past production: 460 tons of Mo. Ore grades: 0.01-2.50% Mo - 0.1-21.5% Cu - 1 g/t Au</td>
<td>Closed</td>
<td>26.78 ± 0.11 Ma (Molybdenite Re-Os age)</td>
<td>Quartz-diorite, quartz syenodiorite</td>
<td>Chalcopyrite, pyrite, molybdenite, magnetite</td>
<td>Silicification, sericite, K-feldspar, argillic alteration (kaolinite)</td>
<td>Vein, stockwork</td>
<td>Babazadeh et al. (1990), Ages from this study (Table 2)</td>
</tr>
<tr>
<td>Qapujuk</td>
<td>Porphyry Cu-Mo</td>
<td>0.95 Mt @ 1.14% Cu - 0.17% Mo - 0.3 g/t Au - 4.0 g/t Ag</td>
<td>Prospect</td>
<td>Eocene-Oligocene</td>
<td>Gabbronodiorite, diorite, quartz syenodiorite</td>
<td>Molybdenite, chalcopyrite, pyrite, molybdenite, chalcopyrite, magnetite</td>
<td>Silicification, sericite, K-feldspar, argillic alteration (kaolinite)</td>
<td>Babazadeh et al. (1990)</td>
<td></td>
</tr>
<tr>
<td>Kadjaran</td>
<td>Porphyry Cu-Mo</td>
<td>2244 Mt @ 0.18% Cu - 0.021% Mo - 0.02 g/t Au (Proven and probable reserves, and indicated resources)</td>
<td>In production</td>
<td>27.2 ± 0.1 Ma to 26.43 ± 0.11 Ma (Molybdenite Re-Os age)</td>
<td>Olivine monzonite, quartz-monzonite, monzodiorite</td>
<td>Pyrite, molybdenite, chalcopyrite, magnetite, sphalerite, galena, subsidiary covellite, enargite, luzonite, bornite, chalcocite, gold, tellurides, tetrahedrite / tennantite.</td>
<td>Sericite, quartz, disseminated pyrite, argillic alteration (kaolinite), carbonate</td>
<td>Stockwork</td>
<td>Moritz et al. (2012). Ages from this study (Table 2)</td>
</tr>
</tbody>
</table>

Table 1 - continued
<table>
<thead>
<tr>
<th>Deposit name</th>
<th>Deposit type</th>
<th>Reserves-ore grade</th>
<th>Status</th>
<th>Age</th>
<th>Host rock geology</th>
<th>Main mineralogy</th>
<th>Alteration</th>
<th>Ore body geometry</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miskhan/Tsaghqunk-Zangezor-Ordubad zone: Meghri-Ordubad mining district - continuation (Figure 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atkis</td>
<td>Epithermal, polymetallic</td>
<td>1.7 t Au - 29.4 g/t Ag - 0.79% Cu. No reported tonnage.</td>
<td>Prospect</td>
<td>1.2 ± 1 Ma (K-Ar age of sericite from altered host rock)</td>
<td>Monzonite-hornblendic contact</td>
<td>Chalcopyrite, pyrite, sphalerite, galena, molybdenite, enargite. Gangue: quartz, calcite, carbonates</td>
<td>Silicification, sericite, pyrite, kaolinite, chlorite, carbonate</td>
<td>Veins</td>
<td>Mirkchyan et al. (1969). Age from Bagdasaryan et al. (1969)</td>
</tr>
<tr>
<td>Misdag</td>
<td>Porphyry Cu-Mo</td>
<td>350 Mt @ 0.43% Cu (Inferred resources)</td>
<td>Prospect</td>
<td>Likely Oligocene</td>
<td>Granodiorite, quartz-syenodiorite, quartz-monzonite</td>
<td>Chalcopyrite, pyrite, molybdenite, magnetite, quartz</td>
<td>Silicification, sericite, K-feldspar, argillic alteration (kaolinite)</td>
<td>Vein, stockwork</td>
<td>Babazadeh et al. (1990)</td>
</tr>
<tr>
<td>Agyurt</td>
<td>Epithermal</td>
<td>1.13 Mt @ 1.28% Cu - 6.39 g/t Au</td>
<td>Prospect</td>
<td>Eocene-Oligocene</td>
<td>Granodiorite, diorite, quartz syenodiorite</td>
<td>Native gold and silver, sulfozincites, pyrite, chalcopyrite, molybdenite, galena, sphalerite, magnetite, quartz</td>
<td>Silicification, argillic alteration (kaolinite)</td>
<td>Veins</td>
<td>Ramazanov and Kerimli (2012)</td>
</tr>
<tr>
<td>Piyazbashi</td>
<td>Epithermal</td>
<td>1.7 Mt @ 8.6 g/t Au - 3.4 g/t Ag (Proved reserves, and inferred indicated resources)</td>
<td>Prospect</td>
<td>Eocene-Oligocene</td>
<td>Andesitic tuff and flow</td>
<td>Native gold, various sulfides, quartz</td>
<td>Silicification, argillic alteration (kaolinite)</td>
<td>Veins</td>
<td>Pijyan (1975), Karamyan (1976), and Hovakimyan (2008)</td>
</tr>
<tr>
<td>Lichk</td>
<td>Porphyry Cu-Mo</td>
<td>34 Mt @ 0.63% Cu - 0.033% Mo - 0.055 g/t Au (Proven and probable reserves)</td>
<td>Prospect</td>
<td>Oligocene-Miocene?</td>
<td>Early Miocene porphyritic granodiorite</td>
<td>Chalcopyrite, bornite, pyrite, molybdenite, hematite, magnetite. Gangue: quartz, sericite, carbonates</td>
<td>Silicification, sericite, K-feldspar, argillic alteration (kaolinite)</td>
<td>Stockwork</td>
<td>Pijyan (1975), Karamyan (1976), and Hovakimyan (2008)</td>
</tr>
<tr>
<td>Diakhchay</td>
<td>Porphyry Cu-Mo</td>
<td>14.4 Mt @ 0.44% Cu - 0.015% Mo</td>
<td>Prospect</td>
<td>Eocene-Oligocene</td>
<td>Quartz-diorite</td>
<td>Chalcopyrite, pyrite, molybdenite, magnetite, quartz</td>
<td>Silicification, sericite, K-feldspar, argillic alteration (kaolinite)</td>
<td>Vein, stockwork, along main Ordubad fault</td>
<td>Babazadeh et al. (1990)</td>
</tr>
<tr>
<td>Tey-Lichkaz</td>
<td>Epithermal, polymetallic</td>
<td>3.2 Mt @ 0.44% Cu - 5.93 g/t Au - 3.75 g/t Ag (Proven and probable reserves).</td>
<td>Prospect</td>
<td>37.5 ± 0.5 Ma and 33.1 ± 0.5 Ma (K-Ar age of sericite from altered host rock)</td>
<td>Eocene granodiorite and syenodiorite and Middle Eocene basalt and andesite</td>
<td>Native gold, chalcopyrite, arsenopyrite, tellurides, pyrite</td>
<td>Silicification, sericite, carbonates</td>
<td>Stockwork and vein</td>
<td>Amiryan (2008), Hovakimyan and Tayan (2008). Ages by Bagdasaryan et al. (1969)</td>
</tr>
<tr>
<td>Terterasar</td>
<td>Epithermal, polymetallic</td>
<td>0.5 Mt @ 11 g/t Au - 74.8 g/t Ag - 0.45% Cu (Proven and probable reserves)</td>
<td>Prospect</td>
<td>Late Eocene?</td>
<td>Eocene granodiorite and syenodiorite and Middle Eocene basalt and andesite</td>
<td>Native gold, base metal sulphides, pyrite chalcopyrite, arsenopyrite, tellurides, magnetite, galena, molybdenite. Gangue: quartz, carbonates</td>
<td>Silicification, sericite, carbonates, argillic alteration (kaolinite), carbonates</td>
<td>Veins and veinlets</td>
<td>Amiryan (2008), Hovakimyan and Tayan (2008)</td>
</tr>
<tr>
<td>Aygedzor</td>
<td>Porphyry Cu-Mo</td>
<td>51.6 Mt @ 0.17% Cu - 0.042% Mo (Proven and probable reserves and indicated resources)</td>
<td>Prospect</td>
<td>42.6 ± 0.17 Ma (Molybdenite Re-Os age)</td>
<td>Eocene granodiorite, syenogranite</td>
<td>Molybdenite, chalcopyrite, galena, sphalerite, pyrite, enargite, quartz</td>
<td>Silicification, sericite, argillic alteration (kaolinite), carbonates</td>
<td>Stockwork and vein</td>
<td>Pijyan (1975), Karamyan (1978), and Hovakimyan and Tayan (2008). Age from this study (Table 2)</td>
</tr>
<tr>
<td>Agarak</td>
<td>Porphyry Cu-Mo</td>
<td>45 Mt @ 0.5% Cu - 0.029% Mo - 0.025 g/t Au - 1.19 g/t Ag (Proven and probable reserves)</td>
<td>In production</td>
<td>44.2 ± 0.2 Ma (Molybdenite Re-Os age)</td>
<td>Eocene porphyritic leucocratic granite, syenogranite</td>
<td>Pyrite, molybdenite, chalcopyrite, bornite, magnetite, sphalerite, galena, coveilite, enargite. Gangue: quartz, sericite, chlorite, carbonates, K-feldspar, biotite</td>
<td>Silicification, sericite, quartz, disseminated pyrite, argillic alteration (kaolinite), carbonates, albite, chlorite, biotite</td>
<td>Stockwork</td>
<td>Pijyan (1975), Karamyan (1978), and Tayan et al. (2007). Age from this study (Table 2)</td>
</tr>
<tr>
<td>Deposit name</td>
<td>Deposit type</td>
<td>Reserves-ore grade</td>
<td>Status</td>
<td>Age</td>
<td>Main mineralogy</td>
<td>Alteration</td>
<td>Ore body geometry</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sevan-Akera suture zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zod - Sotk</td>
<td>Low-sulfidation epithermal</td>
<td>23 Mt @ 7.0 g/t Au - 8.5 g/t Ag</td>
<td>In production</td>
<td>43 ± 1.5 Ma (K-Ar whole rock alteration age), but interpreted as Oligocene to Miocene (Kozerenko, 2004; Levitan, 2008)</td>
<td>Pyrite, sphalerite, native gold, tellurides, sulfosalts, stibnite, realgar, orpiment. Gangue: quartz, chalcedony, calcite, rhodochrosite, siderite, bournonite</td>
<td>Carbonate (listwaenite), quartz, talc, sericite, montmorillonite, dickite, beidellite</td>
<td>Mostly EW-oriented, deeply steeping quartz veins</td>
<td>Amiryan (1984), Melikyan (1976), Spiridonov (1991), Kozerenko (2004) and Levitan (2008). Age from Bagdasaryan et al. (1969)</td>
<td></td>
</tr>
<tr>
<td>Amulsar</td>
<td>High-sulfidation epithermal</td>
<td>122.4 Mt @ 0.77 g/t Au - 3.5 g/t Ag (Measured and indicated reserves)</td>
<td>In development</td>
<td>Unknown, Oligocene-Miocene?</td>
<td>Eocene-Oligocene andesite, subvolcanic porphyritic andesite, andesitic-dacitic tuff, volcanic breccia. Monzonite-granosyenite dated at 33-34 Ma by K-Ar.</td>
<td>Base metal sulfides, gold, hematite</td>
<td>Silification, vuggy silica, alunite, hematite</td>
<td>NE- and NW-oriented fault control on subvertical ore bodies</td>
<td>Intrusion age from Bagdasaryan and Ghukasian (1985), Lydan International (2016)</td>
</tr>
<tr>
<td>Meghradzor</td>
<td>Epithermal</td>
<td>0.38 Mt @ 12.4 g/t Au (Proven-probable reserves)</td>
<td>In production</td>
<td>41.5 ± 1.0 Ma (K-Ar age of sericite from altered wall rock)</td>
<td>Late Eocene monzonite, monzodiorite, quartz-syenite, syenogranite, andesite, dacite, tuff; Late Jurassic-earliest Cretaceous tonalite, quartz-diorite; Precambrian schist</td>
<td>Pyrite, native gold, sphalerite, chalcopyrite, galena, tellurides, molybdenite, pyrrhotite. Gangue: quartz, carbonates, sericite</td>
<td>Silification, sericite, disseminated pyrite, argillic alteration (kaolinite)</td>
<td>Pinch-swell quartz veins along detachment zones</td>
<td>Amiryan and Karapetyan (1964). Age from Bagdasaryan et al. (1969)</td>
</tr>
<tr>
<td>Hanqavan</td>
<td>Porphyry/stockwork Cu-Mo</td>
<td>109 Mt @ 0.044% Mo and 0.6% Cu (indicated-inferred resources)</td>
<td>Reserve and resource estimation</td>
<td>29.34 ± 0.12 Ma (Molybdenite Re-Os age)</td>
<td>Tonalite crosscut by granodioritic dikes</td>
<td>Pyrite, chalcopyrite, molybdenite, galena, magnetite, scheelite, sphalerite, covellite, tellurides, native gold. Gangue: quartz, calcite, ankerite, siderite.</td>
<td>Silification, sericite, carbonates</td>
<td>Structurally controlled by NE-Age from this study (Table 2)</td>
<td></td>
</tr>
<tr>
<td>Tsaghkuniat massif - South Armenian block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsokhmanouk</td>
<td>Precious metal-sulfide vein-type/stockwork</td>
<td>21.92 Mt @ 1.62 g/t Au - 4.88 g/t Ag (Proven-reserve probable and indicated resources)</td>
<td>Reserve and resource estimation</td>
<td>146.1 ± 0.6 Ma (Molybdenite Re-Os age)</td>
<td>Late Jurassic mafic volcanic rocks and Proterozoic trondhjemite</td>
<td>Sphalerite, galena, arsenopyrite, pyrite, chalcopyrite, gold, tellurides, arsenopyrite. Gangue: quartz and subsidiary carbonate</td>
<td>Argillic alteration, sericite, pyrite</td>
<td>NE-oriented 150-200m wide alteration and mineralized zone, containing subvertical quartz veins, typically rimmed by sulphides</td>
<td>Amiryan et al. (1997), and Wheatley and Acheson (2011). Age from this study (Table 2)</td>
</tr>
<tr>
<td>Adjara-Trialeti belt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merisi</td>
<td>Porphyry-Cu, polymetallic, epithermal</td>
<td>2.9 Mt @ 0.38% Cu and 0.75 g/t Au (Proven and probable reserves)</td>
<td>Closed</td>
<td>Late Eocene</td>
<td>Middle Eocene mafic volcanic rocks and tuff breccia. Late Eocene shoshonitic rocks. Late Eocene calc-alkaline andesite, diorite, granodiorite, syenite-diorite, syenite.</td>
<td>Chalcopyrite, galena, sphalerite, and subordinate marcasite, hematite, native gold and silver, sulfosalts, barite</td>
<td>Silification, sericite, disseminated pyrite, argillic alteration (kaolinite)</td>
<td>Subvertical, EW- to NW-oriented veins</td>
<td>Bugushvili (1980, 2015), Khomerkhi and Tuskia (2005)</td>
</tr>
</tbody>
</table>

Adjara-Trialeti belt (see location in Figure 1)

Tsaghkuniat massif - South Armenian block (Figure 7)

Sevan-Akera suture zone (see location in Figure 2)
Table 2 - Re-Os Data for Molybdenite from ore deposits and prospects of the Lesser Caucasus

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Location</th>
<th>Deposit type</th>
<th>Description</th>
<th>Wt (g)</th>
<th>Re (ppm)</th>
<th>±1σ Re (ppm)</th>
<th>±1σ Os (ppb)</th>
<th>±1σ Re-Os age (Ma)</th>
<th>±σ Re-Os age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0404-3_XX-11-02C</td>
<td>Kharchar, Gedabek district (Fig. 5a)</td>
<td>Porphyry Cu</td>
<td>Quartz-molybdenite vein in porphyry intrusion</td>
<td>0.022</td>
<td>766.8</td>
<td>2.8</td>
<td>482.0</td>
<td>1.8</td>
<td>1071.3</td>
</tr>
<tr>
<td>R0812-8_Teghout-N7/83</td>
<td>Teghout, Alaverdi district (Fig. 4)</td>
<td>Porphyry Cu</td>
<td>Quartz-molybdenite vein, thickness ~0.5 cm, in tonalite-porphyry. Alteration: silicification and sericite (elevation ~900m)</td>
<td>0.011</td>
<td>506.9</td>
<td>2.5</td>
<td>318.6</td>
<td>1.5</td>
<td>775.1</td>
</tr>
<tr>
<td>RO812-5_Toukhmanouk</td>
<td>Toukhmanouk</td>
<td>Intersion-hosted gold and base metal stockwork</td>
<td>Disseminated molybdenite in tonalite-granodiorite (Mirac intrusion)</td>
<td>0.024</td>
<td>117.8</td>
<td>0.4</td>
<td>74.0</td>
<td>0.3</td>
<td>180.5</td>
</tr>
<tr>
<td>RO280-1_NI</td>
<td>Kajaran, middle stream Iry</td>
<td>Pegmatite</td>
<td>Pegmatitic vein, thickness 1.2m, in monzonite, alteration: weak silification, sericite, argillic, carbonates (elevation ~1950m)</td>
<td>0.045</td>
<td>45.1</td>
<td>0.2</td>
<td>28.3</td>
<td>0.1</td>
<td>20.3</td>
</tr>
<tr>
<td>RO391-4_R13</td>
<td>Dastakert</td>
<td>Breccia-hosted Cu-Mo</td>
<td>Molybdenite from matrix of breccia, in granodiorite and volcanic rocks, alteration: silicification, sericitization (elevation ~2300m)</td>
<td>0.023</td>
<td>212.1</td>
<td>0.8</td>
<td>133.3</td>
<td>0.5</td>
<td>89.4</td>
</tr>
<tr>
<td>R0812-4_Dastakert_N98m/75</td>
<td>Dastakert</td>
<td>Breccia-hosted Cu-Mo</td>
<td>Quartz-molybdenite-chalcopyrite matrix of breccia with clasts of volcanic rocks (elevation ~900m)</td>
<td>0.020</td>
<td>235.6</td>
<td>0.9</td>
<td>148.1</td>
<td>0.6</td>
<td>98.7</td>
</tr>
<tr>
<td>RO391-5_98M/75</td>
<td>Dastakert</td>
<td>Breccia-hosted Cu-Mo</td>
<td>Quartz-molybdenite-chalcopyrite matrix of breccia with clasts of volcanic rocks (elevation ~900m)</td>
<td>0.028</td>
<td>315.8</td>
<td>1.1</td>
<td>198.5</td>
<td>0.7</td>
<td>132.3</td>
</tr>
<tr>
<td>RO812-3_Ankaser_N72p</td>
<td>Ankaser</td>
<td>Breccia-hosted Cu-Mo</td>
<td>Quartz-molybdenite stockwork in porphyry intrusion, veinlet zone, thickness ~5 cm, in granodiorite, alteration: silicification, weak sericitization (elevation ~2300m)</td>
<td>0.022</td>
<td>76.3</td>
<td>0.3</td>
<td>47.9</td>
<td>0.2</td>
<td>34.5</td>
</tr>
<tr>
<td>RO404-7_R16</td>
<td>Kajaran</td>
<td>Breccia-hosted Cu-Mo</td>
<td>Quartz-molybdenite-chalcopyrite vein, thickness ~30 cm, adit N4, in granodiorite of Gekhi intrusion (K-Ar whole rock age: 38.6 Ma, and biotite age: 42 Ma; Melkonyan et al., 2008, 2010)</td>
<td>0.045</td>
<td>45.1</td>
<td>0.2</td>
<td>28.3</td>
<td>0.1</td>
<td>20.3</td>
</tr>
<tr>
<td>R0812-1_Kajaran_N160m/75</td>
<td>Kajaran</td>
<td>Porphyry Cu-Mo</td>
<td>Quartz-chalcopyrite-molybdenite stockwork and veins in porphyry intrusion, vein, thickness 10-12 cm, in monzonite, alteration: weak silification, sericite, argillic, carbonates (elevation ~1950m)</td>
<td>0.022</td>
<td>322.4</td>
<td>1.2</td>
<td>202.6</td>
<td>0.7</td>
<td>90.5</td>
</tr>
<tr>
<td>RO391-1_KJ-10-11D</td>
<td>Kajaran</td>
<td>Porphyry Cu-Mo</td>
<td>Quartz-chalcopyrite-molybdenite vein, thickness 6-8 cm, host rock-monzonite; alteration: weak silification, sericite, argillic, carbonates (elevation ~1950m)</td>
<td>0.050</td>
<td>222.6</td>
<td>0.7</td>
<td>139.9</td>
<td>0.5</td>
<td>63.0</td>
</tr>
<tr>
<td>RO391-2_KJ-10-13A</td>
<td>Kajaran</td>
<td>Porphyry Cu-Mo</td>
<td>Quartz-chalcopyrite-molybdenite vein, thickness 8-10 cm, in monzonite; alteration: weak silification, sericite, argillic, carbonates (elevation ~1935m)</td>
<td>0.051</td>
<td>160.4</td>
<td>0.5</td>
<td>100.8</td>
<td>0.3</td>
<td>44.4</td>
</tr>
<tr>
<td>RO391-3_KJ-10-01C</td>
<td>Kajaran</td>
<td>Porphyry Cu-Mo</td>
<td>Quartz-chalcopyrite-molybdenite vein, thickness 6-8 cm, host rock-monzonite; alteration: weak silification, sericite, argillic, carbonates (elevation ~1920m)</td>
<td>0.051</td>
<td>160.4</td>
<td>0.5</td>
<td>100.8</td>
<td>0.3</td>
<td>44.4</td>
</tr>
<tr>
<td>R0820-1_Ni</td>
<td>Kajaran</td>
<td>Porphyry Cu-Mo</td>
<td>Quartz-molybdenite vein, thickness ~12 cm, in monzonite, alteration: K-feldspar, sericite, argillic, carbonates (elevation ~2100m)</td>
<td>0.042</td>
<td>368.3</td>
<td>1.2</td>
<td>231.5</td>
<td>0.8</td>
<td>104.9</td>
</tr>
<tr>
<td>RO404-9_R15</td>
<td>Hanqasar</td>
<td>Porphyry Cu-Mo</td>
<td>Molybdenite disseminated in aplitic granite cutting porphyry K-Ar dating; Gekhi intrusion (U-Pb zircon age: 22.2 ± 0.2 Ma; Moritz et al., in press) (elevation ~2000m)</td>
<td>0.045</td>
<td>197.9</td>
<td>0.7</td>
<td>124.4</td>
<td>0.4</td>
<td>47.4</td>
</tr>
<tr>
<td>RO812-6_Kaler_N57/83</td>
<td>Kaler</td>
<td>Pegmatite</td>
<td>Pegmatitic vein, thickness 1.2m, in monzonite, alteration: weak silification, argillic, carbonates (elevation ~2100m)</td>
<td>0.010</td>
<td>1085.2</td>
<td>5.5</td>
<td>682.1</td>
<td>3.5</td>
<td>352.4</td>
</tr>
<tr>
<td>RO404-5_119999</td>
<td>Paragachay</td>
<td>Porphyry Cu-Mo</td>
<td>Quartz-molybdenite stockwork in porphyry intrusion</td>
<td>0.030</td>
<td>258.6</td>
<td>0.9</td>
<td>162.5</td>
<td>0.6</td>
<td>72.5</td>
</tr>
<tr>
<td>RO404-6_M14</td>
<td>Qafihan, Gekhi intrusion</td>
<td>Garnet skarn</td>
<td>Skarn in contact with the Gekhi intrusion, thickness ~0.5cm (elevation ~2100m)</td>
<td>0.021</td>
<td>108.1</td>
<td>0.4</td>
<td>67.9</td>
<td>0.3</td>
<td>50.6</td>
</tr>
</tbody>
</table>

* age uncertainty includes all analytical sources of uncertainty
σ age uncertainty includes all analytical sources of uncertainty and the uncertainty in the 187 Re decay constant