Transparency, Usability, and Reproducibility: A Four-Step Plan toward Improved Comparative Databases Using Primates as Examples


* Department of Anthropology and Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, SUNY, Stony Brook, NY 11794-4364
† Department of Anthropology, University of Michigan, Ann Arbor, MI 48109
‡ Department of Anthropology, Yale University, New Haven, CT 06511; Facultad de Recursos Naturales, Universidad Nacional de Formosa, Formosa 3600, Argentina
§ Department of Anthropology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003
¶ Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
# Evolutionary Anthropology Research Group, Durham University, Durham, DH1 3LE, UK
** School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281
†† Department of Anthropology, University of Texas, Austin, TX 78712
†† Institute of Human Origins, Arizona State University, Tempe, AZ 85281
$$ Department of Anthropology, University at Albany, SUNY, Albany, NY 12222
¶¶ Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
## Department of Behavioral Ecology, University of Goettingen, Goettingen 37077, Germany
*** Duke Global Health Institute, Duke University, Durham, NC 27708

Address for correspondence: Carola Borries, Department of Anthropology, S-515 SBS Building, Circle Rd, Stony Brook University, Stony Brook, NY 11794-4364
email: carola.borries@stonybrook.edu, phone: (+) 631 632-1518, fax: (+) 631 632-9165

Total count: 14 text pages

Key words: metadata; primary sources; procedure documentation; user interaction

Short title: Four steps to improve comparative databases
Recent decades have seen rapid development of new analytical methods to investigate patterns of interspecific variation. Yet these cutting-edge statistical analyses often rely on data of questionable origin, varying accuracy, and weak comparability which seems to have reduced reproducibility of studies. It is time to improve the transparency of comparative data, while also making these improved data more widely available. We, the authors, met to discuss how transparency, usability, and reproducibility of comparative data can best be achieved. We propose four steps: (1) data identification with explicit, operational definitions and complete descriptions of the methods; (2) inclusion of fields to capture key characteristics of the data, such as sample size or nutrient availability (e.g. captive versus wild animals); (3) documentation of the original reference for each datum; and (4) facilitation of effective interactions with the data via user friendly and transparent user interfaces. We urge reviewers, editors, publishers, database developers and users, funding agencies, researchers publishing their primary data, and those performing comparative analyses to embrace these standards to increase the transparency, usability, and reproducibility of comparative studies.

From the beginning of evolutionary biology, the comparative method has been a major analytical tool,\textsuperscript{1-3} allowing for the examination of patterns and processes of evolutionary change.\textsuperscript{4} Some of the main obstacles to overcome in comparative analyses have been statistical in nature: How should we control for confounding variables? What criteria should we use to assess whether patterns are statistically significant and biologically meaningful? How should we control for the non-independence of comparative data that stems from phylogenetic relatedness? Much progress has been made with respect to these issues, especially in the development and use of
phylogenetic comparative methods. For example, building on initial descriptions of phylogenetically independent contrasts, methods can now incorporate phylogenetic uncertainty, intraspecific variation, and different models of phenotypic evolution.

Although phylogenetic and statistical methods are rapidly advancing, an increasing number of researchers argue that the data to which these methods are applied are ‘stuck in the dark ages’. It is imperative that, before the specific methods employed in a comparative study are considered, the suitability of the data be thoroughly evaluated. The time has come to bring our comparative databases into the modern age, and to represent uncertainty in the data in the same way we might represent uncertainty in a statistical model or in a phylogeny. It is also important that we be able to evaluate which sources of uncertainty – in the data, the phylogeny, and the statistical methods – have the greatest influence on comparative results.

To approach these issues, the authors met on May 28, 2014 at the National Evolutionary Synthesis Center (NESCent, Durham, NC, USA) and developed a four-step plan to improve comparative databases. We focused on primates, a relatively well-studied mammalian order that is the subject of many comparative studies. However, these concerns and suggestions are relevant to all taxonomic groups and disciplines. Here, we begin by identifying the problems that are often shared by investigators of a wide range of comparative questions involving morphology, life history, behavior, and ecology.

One problem is that data points cannot always be traced to actual measurements. Gestation length in proboscis monkeys (Nasalis larvatus) appears to be such a case. As far as we know, the gestation length for this species has yet to be determined. Nevertheless, in almost all primate life history compilations, gestation length for proboscis monkeys is reported as 166 days (e.g.), and this value has been used in many comparative studies (e.g.). The value of 166 days
appears to originate from Schultz,²⁷:²⁸¹ who stated 74 years ago that: “Nothing is known in regard to the duration of the various periods of growth in the proboscis monkey, but it may be assumed that these do not differ radically from the conditions in macaques. In the latter pregnancy is known to last 166 days …”. Such a statement was acceptable at the time, when the strong allometric relationship between body mass and life history traits was less widely appreciated. Today, however, it is unreasonable to assume a similar gestation length in two species of such different adult female body mass (10.5 kg in the proboscis monkey versus 4.9 kg in rhesus²⁸). Such erroneous claims may be perpetuated in any study, but comparative studies are particularly vulnerable, as the authors are unlikely to have in-depth knowledge of every taxon included in the analysis (see also²⁹). Unfortunately, such inappropriate attribution of data to particular sources is a recurring problem in comparative databases of primate life history (Borries et al., unpublished compilation).

In other cases, data from the primary literature that percolate into comparative studies may reflect results that are of questionable value because of small sample sizes, short study periods, or a specific research design. For example, a group of wild long-tailed macaques (Macaca fascicularis) was characterized as 100% fruit-eating during five months of the year based on 2, 3, 7, 7, and 20 instances of feeding observed per month, respectively; the same group was considered 100% grass-eating in another month based on a single feeding observation³⁰:²²⁷. Clearly, one cannot be confident in the diet of a population when assessed with only a handful of isolated feeding observations, yet these values have subsequently been used in comparative tests (e.g.³¹,³²).

Similarly, certain data recording methods may lead to results of limited general use, for example when sizes, compositions, or densities are estimated for unhabituated groups (where
many of the group members may have already fled from the observer’s approach) or during brief
counters on transects when many individuals are out of sight for similar reasons (e.g.\textsuperscript{33}). Such
approaches may result in group sizes being underestimated, and group densities being
overestimated by a factor of 2 or more.\textsuperscript{34}

All the above issues relate to the accuracy of individual data points; how closely do data
match the “true” value which is free from systematic errors\textsuperscript{35}. While it may be difficult to
demonstrate the extent of bias introduced by a single inaccurate data point, the basic problem
runs deeper. As scientists we are obliged to provide and use accurate data, because inaccurate
data have the potential to reduce reproducibility leading to poor use of time and resources.\textsuperscript{36}
Importantly, in the few cases currently published in our field, existing databases were found to
contain multiple data points with problems like those described above.\textsuperscript{15,33} Using such inaccurate
data in comparative analyses may bias the results, or lead to failure to detect existing patterns.

To evaluate the effect of accuracy, Borries et al.\textsuperscript{15} compared gestation lengths in two primate
taxa (Asian colobines and Asian macaques) with data drawn from four published life history
compilations. Gestation length is expected to be similar among closely related species and vary
with body size.\textsuperscript{37} However, the authors found no significant relationship between gestation
length and body size or taxon in any of the four datasets (using a phylogenetic generalized least
squares model, all $P$’s$>$0.05). In contrast, the model based on a fifth set of data containing only
entries checked for accuracy produced the expected relationship ($R_{adj}^2=0.91$, $P<0.001$) with
significant effects for body mass ($P<0.007$) and taxon ($P<0.001$).\textsuperscript{15}

\textbf{Comparative studies may also be compromised when data collected under different criteria
or with incompatible methods are pooled under the same trait.} Even a trait as seemingly
straightforward as body mass may generate substantial errors (beyond resolution and precision of
the scales used when data for different definitions of what counts as an ‘adult’ individual are lumped. In a study of ape morphology, 28% of chimpanzee skeletons and 38% of gorilla skeletons had adult dentition, but their bones were still growing and they had likely not yet reached adult mass. Thus, despite not being fully grown, these individuals would have been classified as adults if dentition were used as the defining characteristic for adulthood. Another example of multiple definitions of a trait is ‘weaning age’, which in primates can include the following: the age at first intake of solid food (within the first weeks or months of life); observations of conflict over access to the nipple; the ability to survive as an orphan; or the age at cessation of nipple contact, which in extreme cases can average 6.5 years (Bornean orangutan, *Pongo pygmaeus wurmbii*).

Subsuming data based on such vastly different definitions into a single trait (‘weaning age’) will be unlikely (in most cases) to produce a false positive (Type I error). Compared to the earlier example on accuracy in gestation length, here now each data point can be very accurate, but compatibility may be compromised. Combining incompatible data as in the case of weaning age may prevent us from detecting real patterns or from determining the relative strength of different effects.

Another example, from the study on life history in Asian colobines and Asian macaques illustrates this. Data for age at first reproduction and reproductive rates were drawn from only primary sources and checked for accuracy, trait definitions, and data collection methods. Still, the comparison revealed no statistically significant relationship between body mass and either of these life history variables. This could be explained by the fact that data from different nutritional conditions (captive and wild) were combined in the dataset, as nutritional intake is known to greatly impact maturation and reproductive output. Including additional information
on nutrient availability as a simple binary variable resulted in greatly improved models with an $R^2_{adj.}$ value of 0.42 for age at first reproduction ($P$ value for body mass $=0.01$) and an $R^2_{adj.}$ value of 0.65 for reproductive rates ($P$ value for body mass $<0.01$).

Together, these issues related to accuracy and comparability may lead to conflicting results that cause more confusion than clarity and thus slow our progress toward finding general patterns. Consequently, reproducibility may become impossible and results from different studies may differ, resulting in less, rather than more certainty in our conclusions. While it is often unclear why results vary among comparative studies, we suspect that many differences emerge because researchers use different data collection protocols, employ divergent definitions for traits of interest, and rely on inaccurate or incomplete or imprecise compilations as datasets – all circumstances that can and should be improved.

**FOUR STEPS TO IMPROVE COMPARATIVE DATA**

To tackle these issues, we met and discussed the status of comparative databases for the mammalian order Primates. Below, we outline the four steps that we believe have the potential to improve future comparative studies. We were guided by our experience with various kinds of datasets, analyses, and questions, and by Whitlock’s advice: “The central goal to have in mind … is to ensure that a new user, perhaps someone unknown to you working with the data 20 years later, can correctly interpret the results and derive correct conclusions from the data.”

Thus, in addition to ensuring the transparency of a database and its usability in the present, we were also concerned about future reproducibility of the result. This ‘call to arms’ agrees with several of the standards of the Transparency and Openness Promotion Guidelines, which among others call for a standardization of research procedures and a clear description of all
aspects of data collection and definition.

**Step 1): Identifying Data.** The path to improvement begins with unequivocal, complete descriptions and definitions of all variables included in a comparative database, with details about how data were measured or determined. Before naming a variable, it is recommended to check the literature to identify and use previously published definitions. Using precise operational definitions also provides explicit criteria for including and excluding data from a comparative database. Importantly, once a definition has been chosen, only data matching it should be included in the database. We suggest reporting in comparative databases the means, standard deviations, medians, and ranges when available, or calculations of these measures when the original source provides raw data. To guarantee transparency and reproducibility, it must be possible to trace each data point back to its original source. To this end, every alteration, even a mere conversion of dimensions (e.g., from days to weeks or centimeters to millimeters), needs to be identified in the database, for example by using a Boolean data type to indicate whether a certain action was performed or not.

When compiling data, the rate of transcription errors can be much reduced by using a relational database, or a ‘not only SQL’ approach. An additional, essential aspect of generating high quality databases is the proof-reading and double-checking process. Ideally, someone other than the person who entered the data would perform the double-checking. As a final step, we recommend having an external expert examine the selected data. This could be an author of the underlying primary sources, or somebody familiar with the taxon and its relevant literature.

**Step 2): Including Metadata.** It is essential to include additional information (metadata) to
further characterize and contextualize the primary data used in a comparative analysis. Beyond those categories summarized in the Dublin Core Metadata Initiative (http://dublincore.org/) and Darwin Core (http://rs.tdwg.org/dwc/), we strongly recommend including location of sampling (geographical coordinates and their precision), time period, study duration, number of groups, number of individuals, and other measures of sample size. Some of these types of metadata are being included in proposed extensions to Dublin and Darwin Core, including PaleoCore (http://paleocore.org/) for paleobiology datasets and EthoCore (http://ethoinformatics.org/) for behavioral and ecological datasets. Metadata are essential components of comparative databases to capture trait variation within and among species (see e.g.50). They furthermore allow for a gross quality assessment (e.g. sample size, number of individuals), and enable users of the data to select particular types, such as only those studied for a specified minimum time period, for specific analyses.

Some metadata also help to categorize the core methods used for data collection (e.g. gestation length based on conceptions estimated via hormonal concentrations versus based on mating patterns), or data analysis (e.g. home range sizes calculated using minimum convex polygons versus local convex hull versus kernel density methods). Information on ecological context and nutrient availability is also crucial, given that captive and wild animals have different nutritional regimes that may affect key variables, such as body mass or speed of growth and reproduction.54-56 Although a distinction between captivity, provisioning, and food-enhanced conditions (crop raiding) is often possible,39 it may suffice to distinguish if the study animals consumed any kind of human-made food.15 This enables the compiler of comparative data to include, for example, data from captivity and the wild into a single database, and then control for nutritional conditions in the analysis.
**Step 3): Documenting Procedures.** To maintain reproducibility, a comparative database requires a written protocol that describes the specific search strategy used to locate data that were subsequently selected and included. Such documentation will also include the list of terms used in online search engines, how primary sources were located, and which other search variables or methods were employed, such as searches within a given species, by study site, or by variable. These protocols should be clearly written and linked to the database and/or provided as publications that describe or use the database.

In comparative databases, every datum is ideally documented by providing its source (the full reference for its first publication) together with the page number and/or Table/Figure numbers, as appropriate. This ensures that the primary source indeed exists (unlike the proboscis monkey example above) and allows for speedy location of the data even within extensive sources such as books or theses. Furthermore, it enables users to reconcile discrepancies in existing datasets.

Trait definitions, sampling methods, and actual data values can only be extracted directly from the primary source. On occasion, relevant metadata may have to be retrieved from other primary sources, and it is important that the trail to those sources also be provided. Past compilations can be helpful in locating primary sources, but they themselves cannot serve as primary data sources. The only exceptions are databases assembled in accordance with the guidelines outlined here. When an analysis is published based on a comparative database, the version number of the database should be identified explicitly. Before using such a database, however, we recommend conducting multiple, random spot checks against the primary sources provided for a taxon that the author is very familiar with, and to only use databases with very
low error rates.

**Step 4): Facilitating Effective Interactions with the Data.** Ideally, comparative databases are made publicly available, leaving it to the user to decide if and which of its components are considered important. To facilitate access to a database by users who are unfamiliar with its basic contents and structure, all key components of the comparative database including the schema (which illustrates the relationships between the different components) can be summarized in a concise yet complete ‘read me’ file. In addition, an index and a table of contents will facilitate orientation and provide a first overview.

All elements of a database (including metadata) are best be made available for download in a widely available format, such as text files, thus allowing for a wide range of future uses via different programs. We recommend providing a clear, largely self-explanatory output design, with an easy to understand web browser based Graphical User Interface (GUI) that allows for a limited set of query options. The interface will also help prevent accidental misuse of the database, such that fields can only be combined in ways intended, and users will be unable to gain access to the underlying database directly (where errors could be introduced). A GUI can best be improved by running extensive test queries prior to the release that simulate data extractions required for already published analyses. These processes usually take more time than anticipated, but they are extremely important as their outcome may decide the success or failure of a database.

**ADDITIONAL MEASURES TO IMPROVE COMPARABILITY**

Implementing the steps outlined above requires the support of authors and reviewers of the
primary literature, editors and publishers, developers and users of comparative databases, and funding agencies. We now consider each of these in turn.

Authors publishing primary data that might later be collated into a comparative database play a key role in setting standards for the data available. Steps 1 and 2 above in particular demonstrate the importance of clear variable definitions and associated contextual information that can be used later as metadata. Authors are encouraged to publish this information, even if unnecessary for their current manuscript. The extra information can be presented as supplemental material and by referencing published work containing these data. In the near future, we hope that we as a discipline will agree on explicit guidelines to standardize the data even before they are being collected.

Reviewers are also essential to improving the primary and comparative data reported. As manuscript reviewers, we can all contribute toward implementing new rigor by requesting additional explanatory information from our peers to meet the standards above. Compliance may be better achieved when reviewers articulate to authors why following standards will increase the impact of their research, rather than simply setting a bar for authors to reach to achieve publication.

Editors and publishers can support the process by allowing for the inclusion of additional information. They can furthermore attach contingencies to acceptance of primary and comparative research papers, such as data upload in respective databases before a publication can go online. A good example is in place for DNA sequences, which are submitted to and made available through NCBI GenBank (http://www.ncbi.nlm.nih.gov/genbank/). This is also an elegant solution to keep existing databases updated in the long run. Recording and publishing data so that they can be used in comparative databases is an important core contribution and
should be rewarded with recognition in the form of citations. This would require some changes to the data reporting process in comparative publications.\textsuperscript{57} We support referencing the authors of the data compilations used, as well as all primary sources considered in the respective analysis. Change is already underway in several scientific fields where multiple journals have adopted a catalogue of increasingly stringent standards developed by the Transparency and Openness Promotion Committee.\textsuperscript{48}

Database developers can also help achieve these new standards by working closely with scientific experts from the targeted research areas. Standardization can be facilitated by providing access to the underlying metadata of a database; in this way, authors of primary data become aware of what to report and which metadata to include in their work. In addition, developers can play a major role in making databases more comprehensive while at the same time easy to use.

Database users can play a major part by providing feedback on individual entries in the databases they use. Their input can be facilitated by web based portals allowing for flexible comments and information transfer to complete or correct specific database content.

Improving transparency and comparability is a slow process requiring recognition by research sponsors. We suggest that funding agencies could approach this in several ways. Standardization of data reporting and sharing could be implemented in data management plans. In addition, by including these standards in calls for proposals – and specifically calling for development of comparative databases – there will be incentives to invest in the steps outlined above. Funding agencies can also provide options for long-term maintenance and continued improvement of existing databases. Finally, any effort to improve transparency, usability, and reproducibility of data should be honored in decisions made by funding agencies, and by tenure
and promotion committees.

MOVING FORWARD

Currently, it is the collective responsibility of all researchers building and using comparative datasets to assess the impact of data accuracy and compatibility on the results of comparative studies. We already have evidence that data for wild animals differ from those for captive or provisioned ones,\textsuperscript{56,58-60} that body mass data are prone to large errors,\textsuperscript{39,40} and that estimates of group size are very sensitive to sampling methods.\textsuperscript{33} We are also gaining a better understanding of the consequences of intraspecific variation on some key associations such as between neocortex size and group size.\textsuperscript{61} We need more of such studies. Unfortunately, achieving similar results based on different datasets\textsuperscript{25} is no guarantee for accuracy, as existing compilations are often strongly interdependent and may contain similar or even identical flaws.\textsuperscript{15}

We are aware that the suggested steps toward transparency, usability, and reproducibility come at a price: the process requires a major time investment that will slow down comparative research until databases become available that are in compliance with the standards proposed here. We are also aware that more transparency of research methods and materials in comparative databases is just a first step. Different studies often use different methods (data collection, analysis), the results of which may be difficult or even impossible to compare. Reaching standardization at the level of data collection, as well as for analyses is an additional, important goal for the future. We are reminded of Felsenstein’s\textsuperscript{7,14} original call to arms to use phylogenies in comparative studies, when he noted that, “Some reviewers of this paper felt that the message was ‘rather nihilistic,’…” Yet in the past 30 years, a huge diversity of new methods – and phylogenies – has emerged to fill the gap he identified. We are now at a similar point with
regard to improving comparative databases, so that these methods can be applied to their best
effect and the findings are more certain. We urge authors, reviewers, editors, publishers, database
developers, and users – as well as funding agencies and compilers of data – to embrace these
standards and to honor the accompanying efforts, to help us generate new knowledge.
ACKNOWLEDGEMENTS

We gratefully acknowledge the National Evolutionary Synthesis Center (NESCent, Durham, USA), which is supported by the NSF (EF-0905606), for hosting and supporting our meeting on May 28, 2014. Additional support was provided by NSF Biological Anthropology (BCS-1355902) and Duke University. We thank Robyn Overstreet for fruitful discussions and contributions. We are also very grateful to Charles Janson, an anonymous reviewer, and John Fleagle, for very helpful comments and suggestions on the manuscript.
REFERENCES


19 Drummond CG. 2009. Replicability is not reproducibility: nor is it good science.


Wilson G, Aruliah DA, Brown CT, Chung Hong NP, Davis M, Guy RT, Haddock SHD, Huff


