Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation

Miguel de Lucas,a,1 Li Pu,a,2 Gina Turco,a Allison Gaudinier,a Ana Karina Morao,b Hirofumi Harashima,c Dahae Kim,a Milly Ron,a Keiko Sugimoto,a François Roudier,b and Siobhan M. Bradya,3

a Department of Plant Biology and Genome Center, University of California, Davis, California 95616
b Institut de Biologie de l’Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024 Paris, France
c RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan

INTRODUCTION

The formation of new organs involves transcriptional reprogramming of pluripotent stem cells in order to give rise to different cell types. This temporal and spatial regulation of gene expression is regulated at multiple levels, including chromatin compaction via histone posttranslational modifications, a general mechanism by which promoter accessibility is regulated to enable interaction with transcription factors and RNA polymerase machinery. Despite the extensive chromatin modification data generated in recent years, few studies have evaluated the transcriptional regulation of chromatin modifiers themselves. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to control the expression of genes involved in developmental transitions and maintenance of organ identity. Here, we show that PRC2 member genes display complex spatiotemporal gene expression patterns and function in root meristem and vascular cell proliferation and specification. Furthermore, PRC2 gene expression patterns correspond with vascular and nonvascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via H3K27me3 regulates the balance between cell proliferation and differentiation. Using enhanced yeast one-hybrid analysis, upstream regulators of the PRC2 member genes are identified, and genetic analysis demonstrates that spatiotemporal regulation of some PRC2 genes plays an important role in determining PRC2 spatiotemporal activity within a developing organ.

PRC2 structure is highly conserved, with four core subunits conventionally named after their homologs in Drosophila melanogaster, including an Enhancer of zeste [E(z)] catalytic SET domain-containing protein, an Extra sex combs (Esc) protein, a nucleosome remodeling factor WD40-containing protein (Nurfs5), and a Suppressor of zeste 12 zinc finger protein in a stoichiometric ratio of 1:1:1:1 (Ciferri et al., 2012). However, the number of genes that encode each subunit varies between species (Mozgová and Hennig, 2015). The Drosophila genome has been described as containing a single gene for each subunit, which consequently constitute a single complex. However, two copies of the Extra sex combs gene, ESC and ESCL, have been reported (Ohno et al., 2008). In mouse and human, there are two copies of the E(z) gene, EZH1 and EZH2 (Ciferri et al., 2012; Margueron et al., 2008). In addition, distinct isoforms of Esc have been reported in human (Mozgová and Hennig, 2015; Kuzmichev et al., 2005). The Arabidopsis thaliana genome encodes three homologous genes for the E(z) methyltransferase subunit, MEDEA (MEA), CURLY LEAF (CLF), and SWINGER (SWN); one for Esc, FERTILIZATION INDEPENDENT ENDOSPERM (FIE); five WD40-containing protein genes, MULTICOPY SUPPRESSOR OF IRA1-5 (MSI1-5); and three Su(z)12, FERTILIZATION INDEPENDENT SEED2 (FIS2), EMBRYONIC FLOWER2 (EMF2), and VERNALIZATION2 (VRN2). Together, these subunits have been reported to form three PRC2 complexes, with the methyltransferases acting partially redundantly (Chanvivattana et al., 2004; Bemer and Grossniklaus, 2012). Several thousand genes are regulated by PRC2, and distinct complexes have been reported to regulate the expression of genes involved in developmental transitions (Zhang...
et al., 2007a; Bouyer et al., 2011). The FIS2 complex comprises FIS2, FIE, MEA, and MSI1 and functions in the female gamophyte and endosperm to repress PHERES (Köhler et al., 2005). The expression of key regulators of the vegetative-to-reproductive transition, such as LEAFY and AGAMOUS, are regulated by the EMF2 complex (EMF2, FIE, CLF, or SWN and MSI1) (Kinoshita et al., 2001). A third complex (VRN2), which comprises VRN2, FIE, CLF, or SWN and MSI1, represses FLOWERING LOCUS C to accelerate flowering in response to cold (De Lucia et al., 2008).

The regulatory mechanisms that determine which of these complexes are able to act at these specific developmental transitions are unclear. Here, we describe spatiotemporal transcriptional regulation of PRC2 genes in the Arabidopsis root and characterize their function in cellular patterning, proliferation and differentiation. The Arabidopsis root has a simple structural and functional organization consisting of concentric cylinders of cell layers with radial symmetry. Briefly, root growth and development rely on the continuous activity of the apical meristem, where multipotent stem cells surround a small population of centrally located organizing cells, the quiescent center (Scheres, 2007; Terpstra and Heidstra, 2009). Owing to a stereotypical division pattern, stem cells, depending on their position, give rise to different cell files in which the spatial relationship of cells in a file reflects their age and differentiation status (Benfey and Scheres, 2000; Dolan et al., 1993). The epidermis is present on the outside and surrounds the cortex, endodermis, and pericycle layers. The internal vascular cylinder consists of xylem, phloem, and procambium tissues.

Here, we demonstrate that PRC2 controls root meristem development and regulates vascular cell proliferation in the maturation zone. Distinct suites of genes are marked by H3K27me3 in vascular and nonvascular cells to regulate the balance between cellular proliferation and differentiation. Dozens of transcription factors bind to the promoters of genes that encode PRC2 subunits and regulate their expression in Arabidopsis. Together, this multilayered regulatory network provides key insights into the varied means by which gene expression is regulated to ensure appropriate morphogenesis and functioning of a plant organ.

RESULTS

PRC2 Subunits Show Regulated Transcript and Protein Abundance in the Arabidopsis Root

A variety of PRC2 complexes act at distinct developmental transitions during the Arabidopsis life cycle (Kinoshita et al., 2001; Chanvivattana et al., 2004). Spatial and temporal gene expression data in the Arabidopsis root (Supplemental Figure 1) suggest that transcriptional regulation may be an important component in determining the presence of specific PRC2 genes in different cell types. SWN, EMF2, and VRN2 proteins have previously been reported in the root meristem and in root hairs (Ikeuchi et al., 2015). To further validate the spatiotemporal expression pattern of PRC2 subunits, we generated transcriptional fusions for each PRC2 gene (Figures 1A to 1H) and studied the respective reporter expression pattern within the root. MEA was not expressed within the root, while FIS2 was expressed in the columella (Figures 1C and 1F). The potential promoter regions of most subunits drove strong expression in all cell types in the meristematic zone that then became preferentially detectable in the vascular cylinder in the elongation and maturation zones (Figures 1A to 1H). CLF in particular showed enrichment in the root vasculature in both the meristem and maturation region of the root, and this was corroborated by an in situ hybridization with a probe to the CLF transcript (Figure 1E; Supplemental Figure 3D). Translational fusions, for all but FIS2, were then used to determine if further regulatory mechanisms might also affect PRC2 protein abundance. SWN protein abundance was enriched within the epidermal and ground tissue layers in the meristem (Figure 2C). The CLF protein, in a complemented clf-29 mutant background, was found in the root meristem and enriched in the vascular tissue in the maturation zone (Figure 2E; Supplemental Figure 3B). CLF protein in a complemented clf-28 swn-7 background shows the same enrichment patterns (Supplemental Figure 2E). Within the root meristem and elongation zone, SWN, EMF2, VRN2, and FIE (in a complemented fie-7 mutant background) proteins are present (Figures 2A to 2C and 2F). In the differentiation zone, however, SWN, EMF2, VRN2, and FIE proteins are present primarily in vasculature (Figures 2A, 2B, 2C, and 2F), although VRN2, EMF2, and SWN proteins have also been reported in root hairs (Ikeuchi et al., 2015).

PRC2 Activity Is Required for Proper Root Development

The expression and protein abundance patterns of PRC2 genes suggested that PRC2 might influence cell patterning or specification in the Arabidopsis root. Since the MEA protein is not found within the Arabidopsis root, CLF and SWN are the only methyltransferases that are candidate regulators of root development. To test the consequences of loss of PRC2 in root cell specification and patterning, we analyzed the phenotypes of clf-28 swn-7 mutants, which produce viable embryos with PRC2 function eliminated after germination. In agreement with Lafos et al. (2011), the clf-28 swn-7 mutants showed a complete loss of H3K27me3 deposition, as revealed using whole-mount immunocytochemistry (Figures 3A and 3B). However, both the clf-29 and swn-7 single mutants show nuclear H3K27me3 (Supplemental Figures 3 and 4), suggesting that these proteins have partially redundant functions. Analysis of the single and double mutant combinations of CLF and SWN demonstrated that they interact genetically. The swn-7 allele has a shorter root with no difference in meristem size, while clf-29 shows no difference in root length but has a significant increase in the number of cells in the root meristem, as previously reported (Figures 3J and 3K) (Aichinger et al., 2011). The roots of clf-28 swn-7 double mutants are shorter than those of the wild type, with a small meristem containing fewer cells (Figures 3C, 3D, 3J, and 3K), as does the clf-29 swn-7 double mutant (Supplemental Figures 5C and 5D). Although no defects in radial cell patterning were observed, the number of cells in the vascular cylinder was significantly increased (Figures 3E to 3G and 3I; Supplemental Figure 5A). In striking similarity with the clf-28 swn-7 phenotype, the fie mutant (Bouyer et al., 2011) displayed a smaller meristem with fewer cells (Supplemental Figure 5B) in addition to a large increase in the number of cells within the vascular cylinder (Figure 3G). This increase in vascular cell number was characterized by an increase in protoxylem and metaxylem cells (Figures 3L and 3M).
Figure 1. PRC2 Genes Are Expressed in Unique and Overlapping Cell Types in the Arabidopsis Root.

For each genotype, the top panel shows the root meristem, while the bottom panel shows the maturation/differentiation zone of the root. All images were taken under the same acquisition conditions.

(A) VRN2pro:GUS expression.
(B) EMF2pro:GUS expression.
Although there are several MSI1 homologs, immunopurification experiments determined that MSI1 is the primary WD40 protein required for PRC2 activity in Arabidopsis (Derkacheva et al., 2013). It should be noted, however, that MSI1 is also a member of other chromatin modifying complexes (Jullien et al., 2008). Given the vascular phenotypes of mutations in other PRC2 genes and in order to circumvent the female gametophytic lethality of msi7 mutants (Köhler et al., 2003), we generated a transgenic line that expressed an artificial miRNA (amiRNA) targeting MSI1 under the WOODEN LEG (WOL) promoter (WOLpro:amiRNA_MSI1) (Inoue et al., 2001), the expression of which is restricted to the vascular cylinder of the root. To validate MSI1 silencing, we introduced the transgene into a line containing MSI1pro:MSI1:GFP (Figures 3N and 3O). We tested for changes in H3K27me3 deposition in MSI1 silenced lines and observed a reduction specifically in the vascular cylinder (Supplemental Figure 6). The MSI1pro:MSI1:GFP signal was undetectable in the WOLpro:amiRNA_MSI1 vascular cylinder (Figures 3I and 3J). Silencing of MSI1 in the vascular cylinder was sufficient to decrease overall root growth (Figures 3P and 3Q), with fewer cells in the meristem, similar to the phenotypes observed in clf-28 swn-7 and fie. However, in contrast with clf-28 swn-7 and fie, which showed an increase in cell number, a statistically significant decrease in vascular cell number was observed (Figures 3G and 3M). Taken together, our results indicate that PRC2 regulates both root meristem cell number and vascular cell proliferation.

Genes Specifically Marked by H3K27me3 in Vascular and Nonvascular Tissue

Many genes marked by H3K27me3 have distinct cell type or tissue-specific expression patterns (Turck et al., 2007; Zhang et al., 2007a; Deal and Henikoff, 2010; Lafos et al., 2011), and the data presented above suggested that PRC2 likely regulates the expression of many genes in the vasculature as well as in other cell types within the root. In order to identify the genes specifically marked by H3K27me3 in the vascular tissue relative to the whole root, we performed fluorescence-activated cell sorting using the WOLpro:GFP marker line (Bimbaum et al., 2003) (Supplemental Figures 7A to 7C) coupled with chromatin immunoprecipitation (ChIP)-seq using an antibody specific for H3K27me3. As a control, we also performed ChIP-seq with an antibody specific for H3K4me3, a chromatin modification associated with expressed genes. As expected from previous reports (Zhang et al., 2007b; Roudier et al., 2011), genes marked with H3K27me3 showed lower expression relative to genes with H3K4me3 (Figure 4A). Comparison between the list of genes marked by H3K27me3 in the WOLpro population and in the root protoplast population (Figure 4B) identified 130 genomic regions marked by H3K27me3 specifically in the vascular cylinder (Figure 4B). In comparison, 2859 genes were specifically enriched in H3K27me3 outside of the vascular tissue (Supplemental Data Set 1). To identify biological processes overrepresented in H3K27me3-marked regions associated with the WOLpro:GFP sorted population relative to the whole root population, we performed Gene Ontology (GO) enrichment analysis (Du et al., 2010). Among these lists of H3K27me3-marked genes, 113 and 82 GO categories were significantly enriched in the WOLpro:GFP population and the whole root population, respectively (Supplemental Data Set 1). Thirty-seven GO terms were enriched only in the WOLpro:GFP population, while six GO terms were enriched only in the whole root population and thus may represent non-vascular-specific GO terms, although they were not significantly underrepresented within the WOLpro:GFP population (Supplemental Figure 6D and Supplemental Data Set 1). The set of non-vascular-specific GO terms are consistent with repression of biological processes associated with vascular development and include axis specification, adaxial/abaxial pattern formation, meristem maintenance, phloem or xylem histogenesis, xylem development, and cell wall organization or biogenesis. In the WOLpro:GFP-specific samples, H3K27me3-marked genes were enriched for floral development, gibberellin-related processes, and terpenoid metabolism, suggesting differential regulation of these pathways within vascular cells.

Functional Importance of Tissue-Specific PRC2-Mediated Repression

In order to identify H3K27me3-marked genes that are transcriptionally repressed in the vascular cylinder or in nonvascular cells, we further restricted the lists of H3K27me3-marked genes using cell-type-specific gene expression data (Brady et al., 2007). The auxin response factor ARF17 is marked specifically by H3K27me3 in vascular tissue and is not expressed in the vascular cylinder. This nonvascular expression pattern was confirmed using a transcriptional fusion in which GFP is expressed under the ARF17 promoter (Figure 4O) (Okushima et al., 2005). Conversely, VND7, a well-described regulator of vascular development, was marked by H3K27me3 in nonvascular cells and is specifically expressed in vascular tissue, as confirmed by the use of a promoter:reporter (YFP) fusion (Yamaguchi et al., 2010) (Figures 4E and 4F).
In order to determine the functional importance of PRC2-mediated repression, we sought to override/bypass the silencing in the vasculature presumably conferred by the PRC2 by expressing ARF17 under the control of a β-estradiol-inducible promoter (Coego et al., 2014). This is a similar approach to one described for AGAMOUS, a PRC2 target gene (Sieburth and Meyerowitz, 1997), and other target genes (Ikeuchi et al., 2015). The constitutive induction of ARF17 in the root caused a loss of organization of the root pattern, with frequent observations of ectopic cell proliferation (Figures 4G to 4J; Supplemental Figure 3A). In contrast, ectopic expression of VND7 with the β-estradiol-inducible promoter induced ectopic xylem cell differentiation, as has been previously reported (Kubo et al., 2005) (Figures 4E, 4F, 4K, and 4L). Thus, these PRC2-target genes regulate the correct balance between cell proliferation and cell differentiation.

Transcriptional Regulation of PRC2 Core Components in the Arabidopsis Root

The differential spatiotemporal expression patterns of PRC2 genes suggest a regulatory role for transcription factors in determining this specificity. We thus utilized the 5′ flanking regions upstream of the translational start site of PRC2 genes in the synthesis of the transcriptional fusions as bait in an enhanced yeast one-hybrid assay (Brady et al., 2011; Taylor-Teeples et al., 2015). In order to focus on the vascular-specific regulation of these genes, we screened the promoters against a set of root

Figure 2. PRC2 Proteins Are Found in Unique and Overlapping Cell Types in the Arabidopsis Root.

For each genotype, the left panel shows the root meristem, while the right panel shows the maturation/differentiation zone of the root.
(A) VRN2pro:VRN2:GUS.
(B) EMF2pro:EMF2:GFP.
(C) SWNpro:SWN:GFP.
(D) MEApro:MEA:YFP in mea-3.
(E) CLFpro:CFP:gCLF in clf-29.
(F) MSI1pro:MSI1:GFP.
(G) FIEpro:FIE:GFP in fie-1.
Figure 3. PRC2 Regulates Cell Proliferation in the Root Meristem and Vascular Cylinder.

(A) and (B) Whole-mount immunostaining with antibodies specific for H3K27me3 (green in the wild-type Col-0) (A) and in the clf-28 swn-7 double mutant (B). Nuclear staining is indicated with white arrows. A magnified nucleus is shown in the inset.

(C) and (D) Differential interference contrast image of the root meristem of the wild-type Col-0 (C) and the clf-28 swn-7 double mutant (D). White lines indicate the root meristem zone (MZ).

(M) and (N) Quantification of the number of cells and root length in the epidermis, cortex, endodermis/pericycle, and xylem for both wild type and mutants. (O) Root meristem size (number of cells) in each genotype.

(A) and (B) Whole-mount immunostaining with antibodies specific for H3K27me3 (green in the wild-type Col-0) (A) and in the clf-28 swn-7 double mutant (B). Nuclear staining is indicated with white arrows. A magnified nucleus is shown in the inset.

(C) and (D) Differential interference contrast image of the root meristem of the wild-type Col-0 (C) and the clf-28 swn-7 double mutant (D). White lines indicate the root meristem zone (MZ).
vascular-expressed transcription factors (Gaudinier et al., 2011) (Supplemental Data Set 2). In total, 101 transcription factors (TFs; out of 653) interacted with these potential promoters (Figure 5), with 10 TF families overrepresented (C2H2, bHLH, Homeobox, MYB, AP2–EREBP, WRKY, GRAS, bZIP, C2C2–Dof, and ARF; P value < 0.01). In order to validate these transcription factor-promoter interactions in planta, we performed two types of assays. Transcription factors were overexpressed using a β-estradiol-inducible system (Coego et al., 2014) and expression of the respective target gene was measured 24 h after induction (Supplemental Data Set 3). In addition, myc-tagged transcription factors were assessed for their ability to drive expression of the GUS reporter gene fused to the target promoter in Nicotiana benthamiana leaves (Supplemental Data Set 3). Altogether, 71 of the 101 transcription factors in the network were tested in these in planta assays and a total of 63 interactions were successfully validated in planta (Figure 5; Supplemental Data Set 3 and Supplemental Figure 8). We hypothesize that these transcription factors represent an important upstream regulatory component of PRC2 gene expression. We next postulated that distinct TFs could control the expression of PRC2 genes in different cell types. To address this question, we investigated the coexpression patterns between each TF and their target gene using spatial root transcriptome data (Brady et al., 2007) (Supplemental Figure 7). A total of nine TF-promoter interactions were significantly and highly correlated across cell types (r ≥ ±0.6) (Supplemental Data Set 3). Together, our data demonstrate that a diverse set of transcription factors is sufficient to regulate PRC2 expression in planta, along with other factors including the regulation of the chromatin environment, which likely act in a combinatorial regulatory code to specify PRC2 gene expression.

Transcriptional Regulation of PRC2 Components Contributes to PRC2-Mediated Regulation of Cell Proliferation and Differentiation

In order to determine the functional contribution of transcription factors controlling PRC2 gene expression that in turn regulate the expression of PRC2 target genes, we focused on the DOF6 transcription factor, which activates CLF expression both in transient and estradiol induction assays (Supplemental Data Sets 1 and 3). The induction of DOF6 causes severe inhibition of root growth but increases the number of cells in the meristem (Figure 6A; Supplemental Figures 2A and 2B). Both DOF6 and CLF are also expressed in root vascular tissue, further supporting the possibility of this regulatory interaction in planta (Rueda-Romero et al., 2012) (Figure 1E; Supplemental Figures 2C and 2D). Since DOF6 is sufficient to increase CLF expression (Figure 6C), our hypothesis was that DOF6 overexpression could lead to an increase in CLF expression in nonvascular tissue, which in turn could result in an increase in PRC2 activity in these cell types, as determined by measuring gene expression and corresponding H3K27me3 levels. Our H3K27me3 ChIP-seq data demonstrate that ARF17 is a vascular-specific target of PRC2, and the transcriptional fusion data demonstrate that ARF17 is only expressed outside of the vasculature (Figure 4C; Supplemental Data Set 1). ARF17 is a target of PRC2 complexes containing CLF but not SWN based on the increase in gene expression in clf-29 versus swn-7 mutants (Figure 6B). Furthermore, overexpression of a miRNA160-resistant version of ARF17 results in prominent vegetative and floral defects similar to those observed in clf-29, including upward curling of leaf margins, reduced plant size, accelerated flowering time, and reduced fertility (Mallory et al., 2005). We thus chose ARF17 as a candidate to explore the influence of PRC2 gene expression manipulation on its target gene (ARF17) expression.

Overexpression of DOF6 led to increased expression of CLF concomitantly with a decrease in ARF17 expression (Figure 6C). This decrease in ARF17 expression is dependent on CLF, as shown in the DOF6 estradiol-inducible line in the clf-29 mutant background (Figure 6E). Furthermore, the domain of ARF17 expression expanded to the vascular cylinder in a clf-29 mutant background (Figure 6F), demonstrating that CLF is sufficient to regulate the spatial expression pattern of ARF17. Finally, H3K27me3 of ARF17 is increased upon DOF6 induction (Figure 6D), demonstrating that DOF6 increases the expression of CLF and, in turn, CLF regulates the expression of the target gene ARF17 through changes in H3K27me3. An additional influence of CLF was observed with respect to the regulation of root length. When the clf-29 mutation was introduced into the DOF6 estradiol-inducible line, upon estradiol induction, no influence on root length was observed. Thus, we identified transcription factors that are sufficient to control the expression of PRC2 genes in the root, and we demonstrated that altered expression of these transcription factors can disrupt the expression of a PRC2 subunit gene in addition to the levels of H3K27me3 and the corresponding expression of its target gene.
Figure 4. PRC2 Regulates the Balance between Cell Proliferation and Differentiation in a Tissue-Specific Manner in the Arabidopsis Root.

(A) Expression levels of genes marked by H3K27me3 in vascular cells relative to expression levels of genes marked by H3K4me3. Whole-root and vascular-specific (pWOL:GFP positive) root protoplast were isolated by fluorescence-activated cell sorting and H3K27me3/H3K4me3-enriched regions were resolved by ChIP-seq. Expression of the vascular specific H3K27me3 and H3K4me3 marked genes was determined using Brady et al. (2007) transcriptional data.

(B) Number of genes marked by H3K27me3 in nonvascular cells.
DISCUSSION

A Multitiered Regulatory Network for Gene Expression

We systematically characterized the regulation of PRC2 gene expression at cell-type resolution using Arabidopsis roots as a model system. We showed that there are distinct spatial and temporal transcript accumulation patterns for PRC2 components. The heterologous (yeast/N. benthamiana) and in vivo (Arabidopsis) approaches we employed revealed a transcriptional network that controls PRC2 gene expression in the Arabidopsis root. Altogether, our data provide evidence that transcriptional control of the PRC2 component CLF, and likely of other PRC2 components, plays an important role in determining H3K27me3 levels and the corresponding expression of H3K27me3 targets in a spatiotemporal manner. This regulation is likely complemented by other previously described modes of regulation in Arabidopsis, including cis-regulatory regions similar to the Polycomb repressive element in Drosophila (Deng et al., 2013), long noncoding RNAs, and protein-protein interactions via PRC1 and PRC1-like genes to determine target specificity and chromatin compaction (Margueron and Reinberg, 2011).

Further dissection of these distinct tiers of this regulatory network is needed. At the upper level of the network, the correlation of expression between transcription factors and their target PRC2 genes (Brady et al., 2007) suggests that distinct groups of transcription factors could be involved in the regulation of PRC2 gene expression. This hypothesis is supported by the fact that several transcription factors were observed to interact with multiple PRC2 gene promoters in our yeast one-hybrid analysis. The identification of these transcription factors could provide insights into the regulation of PRC2 gene expression in the Arabidopsis root.
Figure 6. Functional Validation of a Multitier PRC2 Gene Regulatory Network (TF → PRC2 Gene → H3K27me3-Regulated Gene).

(A) β-Estradiol induction (3 d) of the DOF6 transcription factor results in a significantly shorter root. Root inhibition caused by the induction of DOF6 is abolished in the clf29 background.

(B) ARF17 expression is activated in the clf-29 mutant.
transcription factors regulate the expression of these genes in space, in time, or in both space and time (Supplemental Data Set 1). At the second tier of the network, analyses of PRC2 gene mutants demonstrated that CLF, SWN, and FIE, key components of PRC2, functionally regulate root meristem and vascular development, likely at the level of cell division. Additionally, the translational fusion patterns suggest that only a restricted number of complexes can form at a particular cell type or temporal stage of development. It will be interesting in the future to determine if the cell-type- or tissue-specific expression patterns of CLF or SWN are necessary to regulate the H3K27me3 of distinct suites of genes. In addition, in proximal meristematic vascular tissue, CLF and SWN protein were both present. The mechanism by which different complexes form and how the affinity for different targets is determined remain to be described. At the final tier of the network, whether distinct PRC2 complexes regulate distinct groups of genes within the root meristem remains to be determined. However, our data showing vascular-specific H3K27me3 and silenced genes provide proof of such suites of genes at the level of individual tissues.

Regulation of Cell Proliferation and Differentiation during Arabidopsis Root Development

In plants, PRC2 proteins maintain organ and cell-type identity, regulate developmental transitions, repress cell proliferation (Lafos et al., 2011; Hennig and Derkacheva, 2009), and regulate totipotency (He et al., 2012). Here, we report two additional functions of PRC2 in postembryonic development: the regulation of cell proliferation in vascular tissue and the appropriate execution of xylem cell differentiation (Figures 3E to 3G, 3L, and 3M). In the developing root, procambium cells are the stem cell source responsible for vascular cell types and secondary growth (Mähönen et al., 2006, 2000; De Rybel et al., 2014). Procambium cells proliferate and can undergo differentiation into either xylem cells or phloem cells depending on positional cues (Fisher and Turner, 2007; Etchells et al., 2013; Etchells and Turner, 2010). The vascular proliferation phenotype of the clf-28 swn-7 mutant suggests that PRC2 represses division of the procambium cell population. CLF and SWN are not responsible for initiating division of these cells, but rather, when the appropriate number of cells has been produced, PRC2 activity likely negatively influences chromatin accessibility for transcription factors such as ARF17 in addition to cell cycle regulators. The overproliferation phenotype of the ARF17 overexpressor and its similarity to the phenotype of the clf28swn7 mutant suggest that ARF17 may be such a cell cycle regulator. The lack of a vascular phenotype in the clf29 mutant implies that cell proliferation is likely also controlled by other SWN-dependent H3K27me3 targets. On the other hand, the fie-042 ectopic xylem cell phenotype, the tissue-specific VND7 H3K27me3 deposition pattern, and the finding that overriding this repression through ectopic expression results in ectopic xylem differentiation suggest that tissue-specific PRC2 activity ensures the appropriate execution of the xylem cell differentiation program.

A Comparative Perspective on PRC2 Function in Plants and Animals

In animal embryonic stem cells and outside of the embryo, PRC2 is required for the maintenance of differentiation potential (Laugesen and Helin, 2014). Mutations in PRC2 subunits can either delay differentiation of myogenic or neurogenic cell types or precociously advance the differentiation of particular cell types in addition to preserving the appropriate cell identity (Stojic et al., 2011; Pasini et al., 2007; Hirabayashi et al., 2009; Fasano et al., 2007; Sher et al., 2008; Aldiri and Vetter, 2009). In contrast, in the plant procambium stem cell population, PRC2 regulates self-renewal capabilities. Our data also demonstrate that in root cells, PRC2 ensures the correct cell-type-specific differentiation state through spatially repressing the expression of cell-type-specific developmental regulators (VND7). Thus, in plants, PRC2 regulates self-renewal of the procambial stem cell population in addition to cell differentiation.

Uncontrolled abundance, increased activity, or loss of function of PRC2 components can lead to disease (Bracken et al., 2003; Kleer et al., 2003; Takawa et al., 2011; Varambally et al., 2002; Wagener et al., 2010). Thus, our findings indicate that transcription

Figure 6. (continued).

(C) Induction of DOF6 results in a significant increase in the amount of CLF expression and a corresponding repression of ARF17 expression, as revealed by RT-qPCR.

(D) Induction of DOF6 results in a significant increase in H3K27me3 deposition in the ARF17 loci in the root tissue.

(E) DOF6 induction does not affect ARF17 expression in the clf29 background.

(F) Whole-mount in situ hybridization of ARF17 mRNA. ARF17 expression domain is expanded toward the vascular cylinder in the clf29 mutant. In all cases, significance was tested using a t test. *P < 0.05, **P < 0.01, and ***P < 0.001. Error bars represent the se value of the log2-transformed expression. The mean is from three independent experiments (biological replicates), calculated from the average of three technical replicates per biological replicate. Each biological replicate captures expression from ~200 roots of each respective genotype. In each case, the ΔΔCt was calculated relative to a ubiquitin10 control.
factors may be an important component in determining PRC2 gene expression in animals and, through this mechanism, the repression of their targets. Furthermore, in cases where multiple genes have been found to encode a single PRC2 subunit, the expression patterns of these subunits and their upstream regulation should be systematically explored. Epigenetic abnormalities are common in human cancer and play a key role in tumor progression; hence, significant efforts have focused on developing inhibitors of these PRC2 proteins to treat disease (Helin and Dhanak, 2013). The characterization of cell-type- or tissue-specific regulation of PRC2 gene expression may provide an additional mode by which the negative effects caused by PRC2 misregulation could be abrogated.

METHODS

Plant Material

All transgenic Arabidopsis thaliana plants and mutants are in the Col-0 background except for the VRN2pro:VRN2:GUS line (kindly provided by Caroline Dean), which is in the Ler background, as is the FIEpro:FIE:GFP line (Kinosita et al., 2001). The cif-28 swm-7 (SALK_139371, SALK_109121), cif-29 (SALK_021003), swm-7 (SALK_109121), and fie (SALK_042962) (Bouyer et al., 2011) mutants were kindly provided by François Roudier and Daniel Bouyer. The DCF6 β-estradiol inducible, VND7 and ARF17 transcriptional, and FIE in fie-1 and SWN and MEA in mea-3 translational fusions have been described elsewhere (Rueda-Romero et al., 2012; Yamaguchi et al., 2013a, 2013b; Rademacher et al., 2011; Yadegari et al., 2000; Wang et al., 2006). TF-inducible lines were obtained from the TRANSPLANTA collection (Coego et al., 2014).

Plants were grown under standard conditions at 24°C in a 16-h-light/8-h-dark cycle. For root analyses, plants surfaced sterilized and sown in 1% sucrose Murashige and Skoog (1% MS) medium. Seeds were stratified for 3 d at 4°C and dark and then transferred and kept vertical into a Percival growth chamber with a light intensity of 700 μmol m⁻² s⁻¹ illuminated by a daylight-white fluorescence lamp (FL40SS ENW/37; Panasonic). Selection of transgenic seedlings were performed in 1% MS medium supplemented with 50 μg mL⁻¹ kanamycin or 15 μg mL⁻¹ glutosinate ammonium, depending on the transgene.

Cloning Strategies

All oligonucleotides used in this study are described in Supplemental Data Set 4. All PCR-amplified fragments were completely sequenced after subcloning, and only the clones without PCR-induced errors were used for subsequent cloning steps. For promoter amplification, Col-0 genomic DNA was used as template. For coding region amplification, Col-0 cDNA was used as template, except for the CLF coding region, which was amplified from genomic DNA and thus contains introns. For the generation of the transcriptional GUS fusions, each respective PCR product was introduced into pENTR D-TOPO (Invitrogen) and subsequently recombined into the pGWB4 and pGWB5 destination vectors (Nakagawa et al., 2007) with the exception of the CLF promoter, which was assembled to Venus-N7 (rapidly folding YFP variant) by Hot Fusion reaction (Fu et al., 2014) into the Bsal-digested pGoldenGate-Seq7 (Emami et al., 2013).

For the CLF translational fusion shown in Figure 2, the CLF genomic region was amplified (primers CLF_pro:CLF_TOPO_F:NO_ATG/CLF_R) and introduced into pENTR/D-TOPO (Invitrogen). The gCLF_D_TOPO clone was introduced into the pK7m34GW sequence was then ampliﬁed (ECFP:TOPO_F/CLF_R) and introduced into pENTR/D-TOPO. The -2842 DNA sequence corresponding to the CLF promoter was ampliﬁed (pCLF_F/pCLF_R) and cloned into pENTR 5′TA-TOPO. A MultiSite Gateway reaction was performed using CLFpro:TA-TOPO, CFP:gCLF:D-TOPO, and the pK7m34GW destination vector. The CLFpro:CFP:gCLF transgene was introduced into the cif-29 background by floral dip transformation (Clough and Bent, 1998), and a complementation assay was performed on T2 plants to validate a 3:1 segregation ratio. For the CLF genomic fusion shown in Supplemental Figure 7B, a genomic region of CLF including 2175 bp upstream from the start codon and 1010 bp downstream from the stop codon was ampliﬁed with primers D-TOPO-genomic CLF_s2 and genomic CLF_as2, following with primers genomic_CLF_s1 and genomic_CLF_as1, using PrimeSTAR Max DNA polymerase (Takara). The PCR product was cloned into pENTR:D-TOPO (Thermo Fisher Scientiﬁc), and an error-free entry clone, pENTR-gCLF, was conﬁrmed by sequence analyses. An mGFP sequence with a GGGS-linker at its N terminus was inserted into pENTR-gCLF at the site before the stop codon of CLF in frame by the circular polymerase extension cloning method, following the ampliﬁcation of pENTR-CLF and linker-mGFP with primers CLF_terr_s and CLF body-Δstop_as and primers CLF body-mGFP_s and mGFP-CLF_terr_as, respectively. A recombination reaction was performed between the resulting entry clone, pENTR-gCLF-mGFP, and destination vector pGWB501 (Nakagawa et al., 2007) using LR Clonase II enzyme mix (Invitrogen). Error-free destination clone was conﬁrmed by sequence analyses and introduced into Agrobacterium tumefaciens strain GV3101::mpMP90 by electroporation. The transgene was introduced into the cif-28+/−; swm-7/− plants by floral dip transformation of cif-28+/+; swm-7/− plants. A complementation assay was performed to validate the function of the fusion protein. For the other transgenical GFP fusions, gene promoters were also introduced into pENTR 5′TA-TOPO; gene cDNAs were introduced into pENTR D-TOPO, and the mGFP5 reporter gene was introduced into pDONOR P2−P3. Plasmids containing the promoter, gene, and GFP were introduced into pB7m34GW (Karimi et al., 2005) by a Multitiste Gateway reaction (Invitrogen).

The design of the amiRNA for MSI1 was performed following WMD3 software (Ossowski et al., 2008) and cloned into pENTR D-TOPO. Afterwards, a Multitiste Gateway reaction was performed in combination with the promoter of WOL (kindly provided by Anthony Bishopp, University of Nottingham) and pK7m24GW (Karimi et al., 2005). The resulting plasmids were introduced into Agrobacterium strain GV3101 carrying the pSoup plasmid (Hellens et al., 2000), and Col-0 wild type in addition to MSI1p-gMSI1:GFP were transformed using floral dip (Clough and Bent, 1998). Transformation into the MSI1p-gMSI1:GFP background served as a control to ensure precise tissue-specific silencing of MSI1 with the designed amiRNA.

Arabidopsis Cross Sections

Five-day-old roots were embedded in 3% agarose (PELCO 21 Cavity EM Embedding Mold) and incubated overnight at 4°C in fixation buffer (2.5% glutaraldehyde + 2% paraformaldehyde in 0.2 M phosphate buffer, pH 7). Dehydration was performed by incubating the sample for 2 h in serial dilutions of ethanol (20, 40, 60, 80, 90, and 95%). The sample was plastic embedded (Emami et al., 2013). For the CLF translational fusion shown in Figure 2, the CLF genomic region was amplified (primers CLF_TOPO_F/NO_ATG/CLF_R) and introduced into pENTR/D-TOPO (Invitrogen). The gCLF_D_TOPO clone was introduced into the pB7mGC2 binary vector to generate a CFP:gCLF fusion. The ECFP:gCLF sequence was then ampliﬁed (ECFP:TOPO_F/CLF_R) and introduced into pENTR/D-TOPO. The -2842 DNA sequence complementary to the CLF promoter was ampliﬁed (pCLF_F/pCLF_R) and cloned into pENTR 5′TA-TOPO. A MultiSite Gateway reaction was performed using CLFpro:TA-TOPO, CFP:gCLF:D-TOPO, and the pK7m34GW destination vector. The CLFpro:CFP:gCLF transgene was introduced into the cif-29 background by floral dip transformation (Clough and Bent, 1998), and a complementation assay was performed on T2 plants to validate a 3:1 segregation ratio. For the CLF genomic fusion shown in Supplemental Figure 7B, a genomic region of CLF including 2175 bp upstream from the start codon and 1010 bp downstream from the stop codon was ampliﬁed with primers D-TOPO-genomic CLF_s2 and genomic CLF_as2, following with primers genomic_CLF_s1 and genomic_CLF_as1, using PrimeSTAR Max DNA polymerase (Takara). The PCR product was cloned into pENTR:D-TOPO (Thermo Fisher Scientiﬁc), and an error-free entry clone, pENTR-gCLF, was conﬁrmed by sequence analyses. An mGFP sequence with a GGGS-linker at its N terminus was inserted into pENTR-gCLF at the site before the stop codon of CLF in frame by the circular polymerase extension cloning method, following the ampliﬁcation of pENTR-CLF and linker-mGFP with primers CLF_terr_s and CLF body-Δstop_as and primers CLF body-mGFP_s and mGFP-CLF_terr_as, respectively. A recombination reaction was performed between the resulting entry clone, pENTR-gCLF-mGFP, and destination vector pGWB501 (Nakagawa et al., 2007) using LR Clonase II enzyme mix (Invitrogen). Error-free destination clone was conﬁrmed by sequence analyses and introduced into Agrobacterium tumefaciens strain GV3101::mpMP90 by electroporation. The transgene was introduced into the cif-28+/−; swm-7/− plants by floral dip transformation of cif-28+/+; swm-7/− plants. A complementation assay was performed to validate the function of the fusion protein. For the other transgenical GFP fusions, gene promoters were also introduced into pENTR 5′TA-TOPO; gene cDNAs were introduced into pENTR D-TOPO, and the mGFP5 reporter gene was introduced into pDONOR P2−P3. Plasmids containing the promoter, gene, and GFP were introduced into pB7m34GW (Karimi et al., 2005) by a Multitiste Gateway reaction (Invitrogen).

The design of the amiRNA for MSI1 was performed following WMD3 software (Ossowski et al., 2008) and cloned into pENTR D-TOPO. Afterwards, a Multitiste Gateway reaction was performed in combination with the promoter of WOL (kindly provided by Anthony Bishopp, University of Nottingham) and pK7m24GW (Karimi et al., 2005). The resulting plasmids were introduced into Agrobacterium strain GV3101 carrying the pSoup plasmid (Hellens et al., 2000), and Col-0 wild type in addition to MSI1p-gMSI1:GFP were transformed using floral dip (Clough and Bent, 1998). Transformation into the MSI1p-gMSI1:GFP background served as a control to ensure precise tissue-specific silencing of MSI1 with the designed amiRNA.
Gene Regulatory Network Mapping
Promoter sequences for PRC2 genes are described in Supplemental Data Set 2. Yeast one-hybrid screening was performed as described (Gaudinier et al., 2011). Correlations between predicted transcription factors and targets were determined using root spatial temporal microarray data sets found in Brady et al. (2007). For simplicity, the data were transformed to contain the log2 mean expression value for each sample. A Pearson correlation was calculated for each network-predicted TF-promoter interaction set. Interactions with a Benjamini–Hochberg false discovery rate corrected P value ≤0.05 were considered significant. P values for the Benjamini–Hochberg correction were determined from correlations of all possible TF-promoter combinations of each node within the network.

Validation and the direction of the yeast one-hybrid interactions were characterized in vivo by performing transcription assays in Nicotiana benthamiana leaves and gene expression analyses in Arabidopsis estradiol-inducible transcription factor lines. For transcription assays, transcription factors in PYL436 (effector) (Ma et al., 2013; collection kindly provided by Dinesh Kumar, UC Davis), promoter:GUS (reporter), 35S promoters:Luciferase (internal control), and p19 (RNA silencing inhibitor) constructs were transformed into Agrobacterium (strain GV3101) and used as described (Taylor-Teeple et al., 2015). In Arabidopsis, 12- and 24-h treatments in liquid 1% MS supplemented with 10 μM β-estradiol (from a 10 mM stock in 100% DMSO) was used to induce the expression of each transcription factor in 5-d-old seedlings. Quantification of transcription factor and PRC2 gene expression was performed by RT-qPCR. We calculated the mean from three independent experiments (biological replicates) and from the average of three technical replicates per biological replicate. Each biological replicate captures expression from ~200 roots of each respective genotype. In each case, the ΔΔCt was calculated relative to a Ubiquitin10 control (At4g05320). In all cases, significance was tested using a t test (*P < 0.05, **P < 0.01, and ***P < 0.001).

We used Cytoscape software (Shannon et al., 2003) for data visualization and GO analysis of the network.

Whole-Mount H3K27me3 Immunohybridization of Arabidopsis Roots
The protocol was adapted from She et al. (2014). Roots of 5-d-old plants were fixed in fixation buffer (1× PBS, 2 mM EGTA, 1% formaldehyde, 10% DMSO, and 1% Tween 20) for 30 min at room temperature and then mounted in 5% acrylamide on a microscope slide. Samples were fixed by incubating them for 5 min in 100% ethanol, 5 min in 100% methanol, 30 min in methanol: xylene (1:1), 5 min in methanol, 5 min in ethanol, and 15 min in methanol:PBS (1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, and 18 mM KH2PO4, pH 7.4) + 0.1% Tween 20(1:1)+2.5% formaldehyde. The samples were then rinsed with PBS + 0.1% Tween 20 and cell walls were digested for 2 h at 37°C with cell wall digestion solution (0.5% cellulase, 1% driselase, and 0.5% pectolyase in PBS). After rinsing with PBS + 0.1% Tween 20, the samples were permeabilized in PBS + 2% Tween 20 for 2 h. Immunodetection was performed using antibodies against H3K27me3 (Millipore 07-449), H3K4me3 (Millipore 07-473), and H3 (ab1791) as a control at a 0.01 μg/mL final concentration each, for 14 h. Samples were washed for 4 h with PBS + 0.1% Tween 20 and incubated for 12 h with goat anti-rabbit (Alexa fluor 488 conjugate) secondary antibody (Life Technologies A-11034A). Samples were washed with 1× PBS + 0.1% Tween 20 for 1 h, and nuclei were counterstained with propidium iodide at a concentration of 5 μg/mL for 15 min, rinsed with PBS + 0.1% Tween 20, and mounted in Prolong Gold (Invitrogen) + 5 μg/mL propidium iodide. Samples were imaged using a Zeiss 700 (Genome Center, University of California, Davis). Simultaneous detection of Alexa fluor 488 and propidium iodide signal was performed using the same settings among the different samples/mutants (10 to 15 roots were studied for each mutant line).

Fluorescence-Activated Cell Sorting
Arabidopsis WOL*15;GFP root protoplasts were prepared as described (Brady et al., 2007). The MoFlo cell sorter’s electronic configuration was modified to identify intact protoplasts above electronic and sample buffer “noise” levels by choosing a side scatter electronic threshold and by applying logarithmic scaling to the forward angle and side angle 488-nm laser light scatter signals. To collect the GFP-positive protoplasts, the green fluorescence of the GFP (530/50 detection filter) was separated from the red fluorescence (emission 670/30) of chlorophyll (Supplemental Figure S). Protoplast chromatin was cross-linked with 0.1% formaldehyde for 5 min and the reaction was stopped by adding glycerine (0.125 M final concentration).

ChIP Assay
The ChIP assay performed in this study is a modification of the protocol described by Bouyer et al. (2011). We used four independent biological replicates (100,000 GFP-positive protoplast each) and two antibodies: H3K27me3 (Millipore 07-449) and H3K4me3 (Millipore 07-473). DNA recovered after ChIP and the input chromatin were both amplified using a SeqPlex Enhanced DNA amplification kit (SEQUX; Sigma-Aldrich) following the manufacturer’s instructions. Amplified DNA was used to synthesize a barcoded Illumina-compatible library (Kumar et al., 2012). Libraries were pooled and sequenced on the HiSeq 2000 in 50SR mode.

ChIP-Seq Data Analysis
Reads were filtered by length and quality and aligned to the Arabidopsis (TAIR10) genome using Bowtie (Langmead et al., 2009) and the parameters “-v2 -m1-best-strata-S”. SCICER software was used to determine the differentially methylated islands using a 200-bp window size, 200-bp gap size, and a false discovery rate of 0.005. The genomic regions containing the histone modification were determined using windowed software (Quinlan and Hall, 2010) and ~1000 bp upstream and downstream of the gene body for H3K27me3 and 200 bp upstream and 200 bp downstream for H3K4me3. Genes that overlap in at least three of the four biological replicates were considered as high confidence genes for the downstream analyses.

Root cell-type-specific expression of the H3K27me3 and H3K4me3 affected genes was obtained from Brady et al. (2007). Raw expression values were log2 transformed and graphed with R software and the ggplot2 package.

GUS Expression Analysis in Arabidopsis
Plant tissue was fixed in 90% aceton for 30 min and washed twice with water before GUS staining. Roots were submerged in the GUS staining solution (50 mM phosphate buffer, 0.2% Triton TX-100, 1.5 mM potassium ferrocyanide, 1.5 mM potassium ferricyanide, and 2 mM X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronic cyclohexamine salt dissolved in DMSO; Gold Biotechnology G1281C1), infiltrated under vacuum for 5 min, and incubated at 37°C in the dark for 18 h. Roots were then washed with increasing concentrations of diluted ethanol (20, 35, 50, and 70%) and then mounted with Hoyer’s solution on microscope slides. The activity of the GUS reporter gene was observed under a Zeiss Axioscope 2 fluorescence microscope.

In Situ Hybridization
The ARF17 and CLF coding region was PCR amplified using Col-0 cDNA and the set of primers ARF17_5′DNA_F/ARF17_3′DNA_R and CLF_TOPO_ F_NO_ATG/CLF_R(no_STOP). PCR product was cloned into pGEMTeasy (Promega). Fluorescein-labeled sense and antisense probes were performed according to the manufacturer’s indications (Fluorescein RNA labeling mix; Roche). Tissue fixation, permeabilization, probe hybridization, and detection were adapted from Bruno et al. (2011). Probe detection was performed using horseradish peroxidase-conjugated anti-FITC antibody (1:100 dilution).
Supplemental Data

Supplemental Figure 1. Transcriptional profile of PRC2 genes in the Arabidopsis root.

Supplemental Figure 2. DOF6 OX root phenotype, DOF6 and CLF root expression, and CLF protein abundance in the cif28 smn7 background.

Supplemental Figure 3. ARF17ox ectopic cell proliferation data, CLFpro:CFP:CLF complementation assay, and ARF17 RNA in situ sense control.

Supplemental Figure 4. Whole-mount immunostaining of H3K27me3 and H3K4me3 deposition in Arabidopsis PRC2 mutant roots.

Supplemental Figure 5. Root cellular resolution phenotypes of different PRC2 mutants.

Supplemental Figure 6. Whole-mount immunostaining of H3K27me3 in the pWOL:amiRNA_MSI1 Arabidopsis line.

Supplemental Figure 7. Vascular-specific analysis of H3K27me3 deposition for the fluorescence-activated cell sorting of the stele (WOLpro:GFP).

Supplemental Figure 8. Transcriptional profiles of the transcription factors upstream of PRC2 genes.

Supplemental Data Set 1. H3K27me3 and H3K4me3 genes in the vascular cylinder and whole root and associated GO categories.

Supplemental Data Set 2. Protein-DNA interaction network and promoter sequences for the different PRC2 genes studied.

Supplemental Data Set 3. PRC2 network validation.

Supplemental Data Set 4. Primer sequences.

ACKNOWLEDGMENTS

M.d.L. was supported by EMBO and HFSP postdoctoral fellowships. S.M.B. and F.R. were supported by the France-Berkeley Fund. S.M.B. was supported by a Katherine Esau Junior Faculty Fellowship and a Hellman Fellowship. Work by A.K.M. and F.R. with the technical assistance of Erwann Calleux was supported by the European Union Seventh Framework Programme Network of Excellence EpiGeneSys (to V. Colot) and the CNRS. A.K.M. is the recipient of a grant from the French Ministère de la Recherche et du l’Enseignement Supérieur. Work in the Sugimoto lab was supported by the Grant-in-Aid for Scientific Research on Priority Areas to K.S. (26291064). This project was supported by the University of California Davis Flow Cytometry Shared Resource Laboratory with funding from the NCI P30 CA0933730, by NIH NCRR C06-RR12088, S10 RR12964, and S10 RR 026825 grants, and with technical assistance from Bridget McLaughlin and Jonathan Van Dyke. We thank Judy Jernecked for providing access to a microtome and Niko Geldner and Peter Etchells for critical reading of the manuscript.

AUTHOR CONTRIBUTIONS

M.d.L. designed and performed experiments, analyzed data, discussed results, and wrote the article. L.P. performed experiments and analyzed data. G.T. performed computational analyses. A.G. performed experiments. A.K.M., H.H., D.K., and M.R. performed experiments. K.S. designed experiments with H.H. and analyzed data. F.R. designed experiments with A.K.M. and contributed to writing the manuscript. S.M.B. designed experiments, discussed results, and wrote the article.

Received August 24, 2015; revised August 29, 2016; accepted September 14, 2016; published September 20, 2016.

REFERENCES

Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation
Miguel de Lucas, Li Pu, Gina Turco, Allison Gaudinier, Ana Karina Morao, Hirofumi Harashima, Dahae Kim, Mily Ron, Keiko Sugimoto, Francois Roudier and Siobhan M. Brady
Plant Cell 2016;28;2616-2631; originally published online September 20, 2016;
DOI 10.1105/tpc.15.00744

This information is current as of December 2, 2016

Supplemental Data
http://www.plantcell.org/content/suppl/2016/09/20/tpc.15.00744.DC1.html

References
This article cites 82 articles, 32 of which can be accessed free at:
http://www.plantcell.org/content/28/10/2616.full.html#ref-list-1

Permissions

eTOCs
Sign up for eTOCs at:
http://www.plantcell.org/cgi/alerts/ctmain

CiteTrack Alerts
Sign up for CiteTrack Alerts at:
http://www.plantcell.org/cgi/alerts/ctmain

Subscription Information
Subscription Information for The Plant Cell and Plant Physiology is available at:
http://www.aspb.org/publications/subscriptions.cfm