Accepted Manuscript

Unraveling the origin of the Andean IOCG clan: A Re-Os isotope approach

Fernando Barra, Martin Reich, David Selby, Paula Rojas, Adam Simon, Eduardo Salazar, Gisella Palma

PII: S0169-1368(16)30311-0
Reference: OREGEO 1979

To appear in: Ore Geology Reviews

Received date: 1 June 2016
Revised date: 14 October 2016
Accepted date: 17 October 2016

Please cite this article as: Barra, Fernando, Reich, Martin, Selby, David, Rojas, Paula, Simon, Adam, Salazar, Eduardo, Palma, Gisella, Unraveling the origin of the Andean IOCG clan: A Re-Os isotope approach, Ore Geology Reviews (2016), doi:10.1016/j.oregeorev.2016.10.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Unraveling the Origin of the Andean IOCG Clan: A Re-Os Isotope Approach

Fernando Barra¹, Martin Reich¹, David Selby², Paula Rojas¹, Adam Simon³, Eduardo Salazar¹, Gisella Palma¹

¹Department of Geology and Andean Geothermal Center of Excellence (CEGA), FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile

²Department of Earth Sciences, Durham University, Durham DH1 3LE, United Kingdom

³Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Ave, Ann Arbor, Michigan, USA

Revised version submitted to

Ore Geology Reviews

Corresponding author:
Fernando Barra
Departamento de Geología, Universidad de Chile, Chile
fbarrapantoja@ing.uchile.cl
Phone: 56-2-29784532
Fax: 56-2-26963050
ABSTRACT

The Andean IOCG clan in the Coastal Cordillera of northern Chile, comprises the iron oxide-Cu-Au *sensu stricto*, the iron oxide-apatite (IOA), and the stratabound Cu(-Ag) deposits, also known as Manto-type Cu(-Ag) deposits. IOCGs and Manto-type deposits constitute the second source of copper in Chile, after porphyry Cu-Mo systems, whereas IOAs are an important source of iron. Regardless of their economic importance, little is known about their formation and contrasting genetic models have been proposed i.e., an origin from magmatic-hydrothermal fluids exsolved from a cooling intrusion, or formation from non-magmatic basinal brines heated by plutonic bodies. Here we report Re-Os data for five IOCG deposits: Candelaria, Mantoverde, Casualidad, Diego de Almagro, and Barreal Seco, three IOAs: Los Colorados, El Romeral, Carmen, and two Manto-type deposits: Altamira and Franke. Calculated Re-Os ages for some of these deposits are consistent with previously published geochronological data, and indicate an Early to Late Cretaceous age. The calculated ages for the Altamira Manto-type Cu deposit yield a ~90 Ma age, indicating that the Cretaceous Manto-type Cu belt of central Chile extends further north than previously thought. Additionally, the calculated initial Os ratios using reported ages show that IOCGs have a more radiogenic signature (2.0-2.4) than IOAs (1.0-1.2) and Manto-type Cu deposits (~1.1). A comparison with previously published Os initial ratios for the Mantoverde (0.2) and Candelaria (~0.4) IOCGs suggests that the mineralization in Chilean IOCGs is the result of different events with metals derived from diverse sources i.e., the magmatic-hydrothermal system and basement/host rocks.

Rhenium and Os concentrations for the various studied deposits vary over a wide range of values at the ppb and ppt level, respectively, with many sulfides and magnetite bearing appreciable no common Os. The Re and Os contents in sulfides (pyrite,
chalcopyrite) from IOCGs are low, ranging from 2 to 149 ppb Re and up to 49 ppt Os. Pyrite from IOA deposits show Re and Os concentrations ranging from 10.8 to 214 ppb Re, and Os less than 156 ppt, whereas magnetite has lower Re and Os contents (0.7-129 ppb Re, 0.2-3.6 ppt Os). However, rhenium and Os concentrations in magnetite might be attributed to small sulfide inclusions. Chalcocite from Manto-type Cu deposits shows the widest range and highest Re and Os concentrations; 15 to 253 ppb and 34 to 639 ppt, respectively. The Os present in all these deposits is dominated by radiogenic 187Os.

A comparison of Re and Os data from different deposit types, show that Andean IOCG and IOA deposits have similar characteristics to Chilean porphyry Cu-Mo systems with low to moderate Re content (<250 ppb), low Os concentration (<300 ppt total Os) dominated by radiogenic Os (>90%Os$_{r}$), and variable initial Os ratios. Our data supports the idea that Andean IOCG and IOA deposits formed by magmatic-hydrothermal processes with little involvement of basinal brines. In contrast, published Re-Os information from IOCGs in China and Australia argue for the involvement of a much more radiogenic crustal source possibly related to non-magmatic oxidized saline brines that leached basement rocks.

We conclude that Andean IOCG (and IOA) deposits in northern Chile were formed mainly by magmatic-hydrothermal processes related to the formation and emplacement of plutonic rocks with moderate contribution from leaching of basement and/or volcanic host rocks. Surface or basin-derived brines as well as sediments appear to play only a minor role in the formation of the Chilean IOCG clan.
1. INTRODUCTION

The Coastal Cordillera of northern Chile between 21º and 30ºS, is host to several types of mineral deposits, including iron oxide apatite (IOA) or Kiruna-type deposits, iron oxide-copper-gold (IOCG), and stratabound Cu (-Ag) also known as The Manto-type Cu(-Ag) deposits (Fig. 1). Although each one of these deposit types have distinctive characteristics, the common presence of iron oxides (magnetite and/or specular hematite) has led several authors to group them together in what has been termed the IOCG clan (Hitzman et al., 1992; Sillitoe, 2003; Williams et al., 2005; Groves et al., 2010). The Andean IOCG deposits are characterized by abundant presence of magnetite, with chalcopyrite and minor bornite with important amounts of gold and silver. The mineralization occurs as massive orebodies, veins, stockworks, breccias and disseminations, and tends to be controlled by structures or confined to stratigraphic levels forming manto-like ore bodies. The IOCG deposits show complex superimposed alteration events with potassic, sodic, calcic, and sericitic alteration. In Chile, several IOCG deposits have been found during the last decade such as Casualidad (Rivera et al., 2009; Kovacic et al., 2012), Diego de Almagro (Herrera et al., 2008; Loyola et al., 2015), Barreal Seco/Teresa de Colmo (Correa, 2000; Hopper and Correa, 2000), Santo Domingo Sur (Daroch, 2011), El Espino (Correa, 2003; Lopez et al., 2014), and Dominga (Veloso et al., 2016). However, only two large IOCG deposits are currently mined, the Candelaria deposit with estimated total reserves of 408 Mt with Cu grades of 0.6 % and 0.1 g/ton Au (http://www.lundinmining.com/s/Candelaria.asp), and Mantoverde with 42.7 Mt averaging 0.58 % Cu in oxides and about 440 Mt at 0.56 % Cu, and 0.12 g/t Au in sulfides (Rieger et al. 2012).
Iron oxide-apatite (IOA) deposits represent the copper-poor end-member of the IOCG clan (e.g., Barton, 2014), and in the Coastal Cordillera of northern Chile more than 50 deposits have been recognized. Most of these deposits are spatially associated with the Atacama Fault System (Veloso et al., 2015), and are characterized by large sub-vertical magnetite-actinolite-apatite bodies with minor sulfides, mainly pyrite ± chalcopyrite (Ruiz et al., 1965; Bookstrom, 1977; Sillitoe, 2003). Several IOA deposits have been mined in the past (e.g., El Algarrobo, El Romeral, El Tofo, Carmen) and a few are still under production (Los Colorados, Cerro Negro Norte).

Stratabound Cu(-Ag) deposits from the Coastal Cordillera are divided in two groups: (1) hosted in volcanic rocks of Jurassic age in northern Chile (e.g., Michilla, Buena Esperanza, Mantos Blancos), and (2) hosted in Lower Cretaceous volcanic rocks from Central Chile, between 31° to 33° lat. S (e.g., El Soldado, Lo Aguirre). The mineralization, regardless of volcanic host rock age, comprises a paragenesis of pyrite-chalcopyrite-bornite with later chacocite-covellite-djurlerite with abundant hematite (Espinoza et al., 1996). The mineralization is associated with intense Na alteration (albite, scapolite) and weak Ca metasomatism (chlorite, epidote). The orebodies are structurally and stratigraphically controlled forming breccias, veins and/or mantos. Several Lower Cretaceous deposits (El Soldado, Talcuna, Uchumi) are characterized by the presence of bitumen, which acted as a geochemical trap for late Cu-rich hydrothermal fluids (Zentilli et al., 1997; Wilson et al., 2003).

The origin of Andean IOCG deposits and its possible relation with IOA deposits (and possibly Manto-type Cu type deposits) remains controversial. Two general hypotheses have been presented regarding the origin of IOCG deposits; an origin from magmatic fluids (e.g., Hitzman et al., 1992; Pollard, 2000; Rieger et al., 2010), and a second model based on
basinal brines heated by intrusions (e.g., Barton and Johnson, 1996; Ulrich and Clark, 1999; Chen et al., 2011) (Fig. 2).

On the other hand, a model that involves an iron-rich immiscible melt enriched in volatiles such as P (Nystrom and Henriquez, 1994; Lledo and Jenkins, 2008), has been proposed to explain the origin of IOA deposits in contrast to a hydrothermal replacement of andesitic units or deposition of Fe-oxides from hydrothermal fluids (Ruiz et al., 1965; Sillitoe and Burrows, 2002).

The first notion of a possible genetic relation between IOA and IOCG deposits was proposed based on a vertical mineralogical zonation on several vein-type deposits hosted by plutonic rocks from the Coastal Cordillera of northern Chile (Espinoza et al., 1996). This zonation represents a transition from magnetite-apatite-actinolite mineralization at depth, grading to magnetite-chalcopyrite-pyrite-bornite at intermediate levels, and hematite-chalcopyrite-chalcocite-calcite at the top (Fig. 3). This model was later expanded and modified based on the strong structural control of the deposits and spatial association with early mafic dikes (Sillitoe, 2003). Although the transition from IOA to IOCG has not been reported at the district/deposit scale, the zonation from a magnetite-rich IOCG towards a hematite-rich IOCG has been recognized in the Mantoverde deposit (Rieger et al., 2010).

Recent geochemical and mineralogical studies (Knipping et al. 2015a; 2015b; Bilenker et al., 2016; Reich et al., 2016) including trace element analyses, and Fe and O stable isotope data of magnetite provide evidence of a genetic link between magnetite-apatite (sulfide poor) deposits and IOCGs. These works proposed a genetic model for IOA deposits that invokes magnetite concentration by buoyant segregation or flotation of early-formed magmatic magnetite-bubble pairs. In this model, hypersaline fluid bubbles attach to the surface of magmatic magnetite microlites owing to the preferred wetting angles...
between fluids and oxides. The magnetite-bubble pairs coalesce and grow during ascent, forming accumulations of magmatic magnetite in the deeper portions, whereas the hypersaline fluid scavenges more Fe (and possibly other metals such as Cu and Au) from the magma. Ascent and cooling of this Fe-rich fluid along fractures and faults results in the precipitation of hydrothermal magnetite and migration of the (Fe)-metals-rich fluid towards upper crustal levels where it cools and forms IOCG deposits.

The origin of stratabound Cu(-Ag) deposits is also a matter of debate. Although several models have been presented (e.g., Ruiz et al., 1971; Losert, 1973; Sato, 1984; Klohn et al., 1990; Vivallo and Henríquez, 1998; Kojima et al., 2003; 2009) the two prevailing hypotheses are: (1) formation by hydrothermal fluids of magmatic derivation, and (2) formed by fluids of mixed origin mobilized by cooling batholiths (Maksaev and Zentilli, 2002). In the latter, the fluids can be of metamorphic or meteoric origin, or a mix of both. Even though Manto-type Cu deposits are characterized by an abundant and ubiquitous presence of hematite, they are considered as a Fe-poor end-member of the Andean IOCG clan. The mineralization is usually distal and peripheral to upper Jurassic to Lower Cretaceous granodiorite batholiths (Maksaev and Zentilli, 2002).

The central Andes IOCG province, located in the Coastal Cordillera of northern Chile, is an ideal area to study the formation of these deposit-types and test the different genetic hypotheses that have been proposed. The Andean IOCGs are mostly of Cretaceous age, and hence are the youngest in the world, relatively undeformed or metamorphosed. Furthermore, several iron oxide-apatite and Manto-type Cu deposits are located close to IOCG deposits, providing an opportunity to test the possible genetic link between these styles of mineralization. In this contribution, we use rhenium (Re) and osmium (Os) abundances and isotopes to determine the possible source of metals and the age of
mineralization in order to refine a genetic model for the Andean IOCG clan. The main geological features of the ten deposits discussed in this study (IOCGs: Candelaria, Mantoverde, Casualidad, Diego de Almagro, Barreal Seco; IOAs: Los Colorados, El Romeral, Carmen; Manto-type Cu: Altamira, Franke both located in the Altamira district) are reported in Table 1.

2. GENERAL BACKGROUND

2.1 Re-Os systematics

During the last 25 years the Re-Os isotopic system has been extensively used in the study of mineral deposits in order to answer two main questions in economic geology, which are the source of metals and the age of mineralization.

Rhenium has two natural occurring isotopes, ^{185}Re (37.40%) and ^{187}Re (62.6%). Osmium has seven natural occurring isotopes, which are ^{184}Os (0.0177%), ^{186}Os (1.593%), ^{187}Os (1.513%), ^{188}Os (13.29%), ^{189}Os (16.22%), ^{190}Os (26.38%), and ^{192}Os (40.98%). All of them are stable and give Os an atomic weight of 190.2286 (Faure and Mensing, 2005). Rhenium 187 is radioactive and decays to ^{187}Os by beta emission (Naldrett and Libby, 1948) with a half-life of 4.16 x 10$^{-10}$ y (Smoliar et al., 1996). The daughter isotope ^{187}Os produced from the decay of ^{187}Re, is expressed following the law of radioactivity that applies to other radiogenic systems (e.g., Rb-Sr, Sm-Nd, U-Pb); that is, relative to a neighboring stable isotope. Therefore, the decay of ^{187}Re and formation of radiogenic ^{187}Os is expressed in the following equation (Faure and Mensing, 2005):

$$
\frac{^{187}\text{Os}}{^{188}\text{Os}} = \left(\frac{^{187}\text{Os}}{^{188}\text{Os}} \right)_{i} + \frac{^{187}\text{Re}}{^{188}\text{Os}} \left(e^{\lambda t} - 1 \right)
$$

(1)
In this equation there are two unknowns: the initial Os ratio (\(^{187}\text{Os}/^{188}\text{Os}\))\(_i\), and time (t). Additionally, this equation represents a straight line, hence the age and initial Os ratio from a suite of co-genetic samples can be determined by plotting the measured \(^{187}\text{Os}/^{188}\text{Os}\) and \(^{187}\text{Re}/^{188}\text{Os}\) ratio for each sample, and if the isotopic system has remained closed a straight line (i.e., the isochron) can be constructed.

In some cases, when an isochron cannot be constructed because of a limited number of analyses, an initial Os ratio can be calculated if the age of the rock/deposit has been determined by other methods. On the other hand, a calculated age can be obtained if an initial Os ratio is assumed. This approach should be considered with caution, because the initial Os ratio depends on several geological factors and the interplay of multiple possible reservoirs with different isotopic characteristics.

2.2 Distribution and behavior of Re and Os

Rhenium and Os are chalcophile ("sulfur-loving") and siderophile ("iron-loving") elements (Luck et al., 1980), this means that Re and Os are concentrated in sulfides rather than associated silicate minerals and that they must have been concentrated in the metallic core during Earth’s differentiation. Furthermore, osmium is compatible to highly compatible relative to Re during partial melting of the mantle, and hence the crust will evolve to high Re/Os and radiogenic \(^{187}\text{Os}/^{188}\text{Os}\) ratios. The Re-Os geochemical behavior is in contrast with the other more common isotopic systems such as the Rb-Sr and Sm-Nd isotopic systems. These elements are lithophile in nature ("rock-loving") and tend to concentrate in silicate minerals; they also behave in a very similar way under partial melting yielding very similar parent/daughter ratios in the crust and the mantle reservoir. As a consequence, the Re-Os system is a unique geochemical tool to evaluate the relative
contributions of crust and mantle in the formation of ore deposits. High \(^{187}\text{Os}/^{188}\text{Os}\) ratios (≥0.2), compared to the chondritic ratio of the mantle (~0.13; Meisel et al., 2001), may indicate a crustal source for the Os and, by inference, the metals that comprise sulfide minerals that contain osmium. The elevated \(^{187}\text{Os}/^{188}\text{Os}\) ratio in the crust (>0.2), compared to mantle values (0.11-0.15), can be used to readily discern between these two reservoirs.

The distribution of Re and Os in sulfide minerals has not been studied; however analyses of multiple aliquots of a single sulfide sample have yielded variable Re and Os concentrations. This indicates an heterogeneous distribution of these elements in the sulfide matrix, what has been called the “nugget effect” (Freydier et al., 1997; Mathur et al., 2000; Barra et al., 2003; Morelli et al., 2007; Selby et al., 2009). Hence, an isochron can be constructed using a suite of co-genetic samples or by several analyses from a single sample, therefore both the age and initial isotopic composition (and thus the source of Os) can be determined directly on major ore-forming minerals. In some cases sulfide minerals incorporate little or negligible amount of common Os and hence the Os content in this sulfides is dominated by radiogenic Os (i.e., \(^{187}\text{Os}_r\)) produced by the decay of \(^{187}\text{Re}\). This fact precludes a precise determination of the initial Os ratio and the source of Os included in the sulfide phase. Additionally, numerous studies have shown open system behavior of the Re-Os isotopic system in various sulfide phases (McCandless et al., 1993; Marcantonio et al., 1993, 1994; Foster et al., 1996; Lambert et al., 1998; Xiong and Wood, 1999, 2000) and by different processes (i.e., metamorphism, hydrothermal alteration, recrystallization), hence the interpretation of initial Os ratios should be assessed with caution. The construction of isochrons from a suite of cogenetic samples is suggested for the proper determination of the initial Os isotopic composition (Lambert et al., 1998) and to assess
that the system has remained closed after crystallization of the host mineral(s), however in many cases this is not possible due to low common Os concentrations.

2.3 Geological setting

The geologic evolution of northern Chile during the Mesozoic is dominated by the Andean tectonic cycle. This period has been divided in two major stages: a Jurassic-Early Cretaceous extensional stage and a Late Cretaceous to Early Paleogene Chilean-type subduction episode (Coira et al., 1982). The first stage was controlled by an extensional tectonic setting, which resulted in a magmatic arc system and a sedimentary marine back-arc to the east of the arc (Figs. 4, 5). Rapid subsidence of the magmatic arc and correlated back-arc basin, due to extensional conditions, led to deposition of thick volcano-sedimentary sequences in arc areas, and of marine to continental sedimentary units interlayered with volcanic rocks in the back-arc region (Scheuber et al., 1994). The latter comprises transgression-regression successions that indicate variation in the sea level.

One of the major structures developed at this stage corresponds to the Atacama Fault System (AFS), a trench-parallel system that follows the axis of the Coastal Cordillera for more than 1000 km, between 20° and 32ºS (Scheuber and Andriessen, 1990; Brown et al., 1993). This fault system consists on a set of branches marked by prior ductile shear zones and later brittle faults (Brown et al., 1993) with NNW-, N- and NNE- orientation. Several authors describe sinistral followed by dextral arc-parallel strike-slip movements (Scheuber et al., 1994; Scheuber and González, 1999; Grocott and Taylor, 2002) caused by different configurations of oblique plate convergence. In particular, for the Early Cretaceous, transpression had caused tectonic inversion of the former extensional back-arc basin (generating a foreland basin), and other structural elements, leading to essentially
dextral and vertical motion in pre-existing faults. This major structural system not only controlled magma ascent but played a fundamental role in the emplacement of Cretaceous ore deposits (Fig. 4b).

The most plausible hypothesis for the formation of the extensional features involves the decoupling of an old and cold oceanic plate from the western margin of Gondwana during the renewed subduction caused by the beginning of Atlantic rifting (Jaillard et al., 1990). This decoupling generated a slab roll-back resulting in a Mariana-type subduction.

During the second stage, a Late Early Cretaceous compressive pulse inverted most of the structures, including faults and the back-arc basin, probably triggered by a quick expansion of the Pacific oceanic crust (Larson, 1991) and a decrease of the subduction angle at the Chilean trench. This drastic change generated uplift and erosion of Jurassic and Early Cretaceous units, mainly in the back-arc region, as well as an eastward shifting magmatic arc (Berg and Baumann, 1985; Parada, 1990; Dallmeyer et al., 1996; Lara and Godoy, 1998) and development of a broad fore-arc (Charrier et al., 2007).

Magmatic evolution and volcano-sedimentary sequences

During the first stage of the Andean cycle a north-south oriented magmatic arc was formed following the present-day Coastal Cordillera. This arc is represented by different volcanic sequences (i.e., La Negra Formation) between the Arica and Antofagasta region (Kramer et al., 2005).

The Middle to Late Jurassic La Negra Formation is a 7,000 to 10,000 m thick andesite and basaltic andesite lava sequence with sills, volcanoclastic and sedimentary intercalations, that overlie late pre-Andean deposits (Buchelt and Téllez, 1998; González and Niemeyer, 2005). These sequences were deposited at sea level during crustal
subsidence related to extensional conditions. These rocks were affected by low-grade metamorphism mostly due to the high geothermal gradients induced by crustal thinning (Levi et al., 1989).

An important number of calc-alkaline plutonic bodies of intermediate to mafic compositions were emplaced in the Coastal Cordillera (Dallmeyer et al., 1996; Lara and Godoy, 1998; Grocott and Taylor, 2002). The plutonism started during Early Jurassic to Early Cretaceous and migrated eastwards during the Mid-Cretaceous to Early Tertiary. Initial strontium isotope signatures show less radiogenic compositions from Middle-Late Jurassic to Early Cretaceous (Rogers and Hawkesworth, 1989), reflecting a low crustal contamination during the Early Cretaceous, probably related to maximal extension and crustal thinning.

Extensional basins were developed in the back-arc area. The major back-arc basin of Arica and Iquique region corresponds to the Tarapacá basin (Fig. 4a), filled by transgressive-regressive (t-r) deposits, with shallow to deep marine facies, continental sequences and minor interbedded andesitic volcanic rocks that diminishes towards the east (Muñoz et al., 1988; Mpodozis and Ramos, 1990). Several t-r cycles are separated by gypsum layers (Muñoz et al., 1988) of Callovian to Oxfordian age, which define the end of a marine period.

The second stage of the Andean cycle is represented by a discontinuous belt of outcrops along the Precordillera, the Domeyko Range and further south at Central Depression (Charrier et al., 2007). These volcanic and volcanoclastic successions are about 100 km width, and were deposited at extensional basins, indicating crustal extension interphases after the major deformational event that marked the end of the first stage of the Andean cycle. This condition can be associated with a decreasing convergence rate and
thus to a decoupling between the Farallón and South American plates (Scheuber et al., 1994).

3. METHODS AND RESULTS

Collected samples from five IOCG deposits (Candelaria, Mantoverde, Casualidad, Diego de Almagro, Barreal Seco), three IOA (Los Colorados, El Romeral, Carmen) and two Manto-type Cu deposits (Altamira, Franke) were first studied and characterized by polarized light microscopy. Most samples show several small micron-sized inclusions. This is particularly evident in some magnetite samples (Figs. 6E,F). The geology and the paragenetic sequence for the studied deposits have been previously reported and are summarized in Table 1. Samples from the main sulfide ore phase in IOCG and Manto-type Cu, and with more than 70% vol. sulfide were selected for determination of Re and Os abundances and isotopic compositions. For IOAs, in Carmen only magnetite was analyzed because no sulfides are present, whereas both pyrite and magnetite were analyzed from Los Colorados in order to determine possible preferential partitioning of Re and Os in these phases. Based on the results obtained for Los Colorados (Table 2) only pyrite was selected for analysis in El Romeral.

The selected samples were first crushed and then separated using a magnet and by handpicking. Pure sulfide and oxide concentrates (>99%) were analyzed at the Source Rock and Sulfide Geochronology and Geochemistry Laboratory in the Durham Geochemistry Center at Durham University, UK following the procedure described in Selby et al. (2009). Briefly, about 0.4 g of sample was loaded in a Carius tube with a known amount of mixed 185Re and 190Os tracer solutions. Samples were dissolved and homogenized with a mix of concentrated hydrochloric (3 mL) and nitric (6 mL) acid at 220ºC for 48 h. The Os was
later extracted from the acid solution using solvent extraction (CHCl₃) and purified by microdistillation (Birck et al., 1997). The Re fraction was isolated using a NaOH-acetone solvent extraction and further purified by standard anion exchange chromatography. The purified Re and Os fractions were loaded on Ni and Pt filaments, respectively, and analyzed using a Thermo Scientific Triton thermal ionization mass spectrometer in negative mode (N-TIMS). Total procedural blanks for Re and Os were 2.4 ± 0.3 pg and 0.07 ± 0.02 pg, respectively, with an average ₁₈⁷Os/₁₈⁸Os value of 0.25 ± 0.13 (n = 4). Uncertainties are calculated using error propagation and include Re and Os mass spectrometer measurements, blank abundances and isotopic compositions, spike calibrations, weighing uncertainties of sample and tracer solution, and reproducibility of standard Re and Os isotope values.

The results show that Re and Os concentrations vary over a wide range of values (Table 2). In some cases no Os could be measured and this could due to below blank Os concentration in the sample or analytical problems during Os extraction. Rhenium and Os concentrations in IOCGs range from 2 to 149 ppb Re and up to 49 ppt Os. Re contents in IOA deposits tend to be much higher in comparison with IOCGs, ranging from 0.7 to 214 ppb Re, whereas Os in IOAs shows a wide range of concentrations from 0.2 to 156 ppt (Fig. 7). The highest Re and Os concentrations were determined for the Franke Manto-type Cu deposit, where a single sample (sample FB-26) yielded over 250 ppb and 401 ppt, respectively. Replicate analyses from the same mineral separate yielded significant variations in Re and Os concentrations (161 ppb Re, 639 ppt Os). The Altamira Manto-type Cu deposit is located next to the Franke deposit (Fig. 1), however the two Altamira samples (FB-43, -46) yielded much lower Re and Os concentrations (15 and 36 ppb Re, 34 and 159 ppt Os).
The measured Os in all samples is mostly radiogenic 187Os (Table 2), with little to negligible amounts of common Os (i.e., 192Os <3 ppt); this is also reflected in high 187Re/188Os and 187Os/188Os ratios with high uncertainties (Table 2). The limited number of analyses per deposit does not allow for the construction of isochrons, hence an initial Os ratio can be calculated based on equation (1) for those deposits with published geochronological data (Table 1). However, the calculated Os initial ratio ($Os_{i(c)}$ in Table 2) should be considered as an approximation due to the large uncertainties of the 187Re/188Os and 187Os/188Os ratios. Additionally, the relatively large abundance of 187Os in comparison with the low content of common Os in the investigated samples, allows for the calculation of model ages based on the concentration of 187Os and 187Re. The model ages are calculated using the equation $t = \ln(\frac{^{187}\text{Os}}{^{187}\text{Re}} + 1)/\lambda$ in a manner analogous to Re-Os molybdenite ages (Selby et al., 2009; Lawley et al., 2013). Only model ages for samples with measureable Os and correctly spiked are reported in Table 2.

4. DISCUSSION

The origin of IOCG deposits is controversial and several authors have proposed different models to explain the formation of these deposits (e.g., Hitzman et al., 1992; Barton and Johnson, 1996; Ullrich and Clark, 1999; Pollard, 2000; Marschik and Fontboté, 2001; Benavides et al., 2007; Rieger et al., 2010; Barton, 2014). The main debate is centered on the origin of the hydrothermal fluids responsible for the mineralization; i.e., the magmatic-hydrothermal vs. the non-magmatic (basinal or metamorphic) model (Fig. 2). In addition, a possible genetic relationship between Andean IOCG deposits with other members of the IOCG clan mainly IOA and/or Manto-type Cu deposits has been proposed (Espinoza et al., 1996; Maksaev and Zentilli, 2002; Knipping et al., 2015a, b; Bilenker et
The Re-Os isotopic system is a useful tool to determine the source of metals and the age of ore mineralization and hence can provide some insights into the origin of the deposits from the central Andes IOCG clan. The source of metals is inferred from the initial Os ratio usually determined by means of an isochron (Mathur et al., 2000, Barra et al., 2003; Morelli et al., 2004; McInnes et al., 2008; Zhimin and Yali, 2013), however, in those cases in which very little common Os is present the initial Os ratio cannot be determined precisely. Additionally, the age of mineralization can be constrained using the isochron approach or by direct calculation using the 187Re and 187Os concentrations in those samples with negligible amounts of common (or initial) Os (i.e., low-level, highly radiogenic (LLHR) minerals; Stein et al., 2000) as in the case of molybdenite Re-Os dating. The ages thus calculated are known as model ages. These model ages should be used with caution as there are not always reliable and can show a significant age variation and/or high uncertainty.

4.1 Re-Os model ages

For several of the analyzed samples a model age could not be calculated due to very low concentration of radiogenic 187Os in the sample (Table 2), even though the amount of Re in all samples is significant, and hence measureable amounts of 187Os should be expected in these samples. The lack of radiogenic Os may be explained by complete loss of Os by superimposed hydrothermal events (i.e., remobilization), or decoupling of Re and Os that results in accumulation of radiogenic Os as discrete grains within the mineral phase.

In other cases, the calculated age is inconsistent with published age information for these deposits or their host rocks, (e.g., Mantoverde sample FB-1 with a model age of ~148
Ma, inconsistent with a reported age of ca. 129 Ma; Table 1). This could be caused by poorly constrained Os concentrations due to Os overspiking and low Os content, or loss/gain of Re and/or Os. Rhenium loss will result in older ages, whereas Os loss or Re gain will produce younger ages. Due to the very low Os content in the analyzed samples, the slight loss of Os could result in Re-Os dates several Ma younger. On the other hand, samples with a measureable amount of Os and well-spiked in Re and Os, yielded ages which are in good agreement with previously published geochronology data and with a Late Jurassic-Early Cretaceous age for the Coastal Cordillera metallogenic province (e.g., El Romeral FB-37: 118.5 ± 4.9 Ma; Los Colorados FB-19: 116.0 ± 6.2 Ma; Table 1). This supports a link between the dated magmatic and/or hydrothermal event with the mineralization. In some deposits the model ages range within several million years (e.g., Mantoverde 115-132 Ma; Candelaria 109-124 Ma), but are consistent within 8-15% of the reported age (Mantoverde U-Pb zircon age 128.9 ± 0.6 Ma, Gelcich et al., 2005; Candelaria Re-Os molybdenite ages of 115.2 ± 0.6 Ma and 114.2 ± 0.6 Ma, Re-Os isochron 110 ± 9 Ma, Mathur et al., 2002).

Our results show very contrasting model ages for the Franke and Altamira Manto-type Cu deposits. Both deposits are spatially very close and have been considered by the mine geologists as a single large orebody. A chalcocite sample (sample FB-43) from Franke was analyzed twice yielding very different model ages (sample FB-26: 124.0 ± 0.9 Ma; sample FB-26r: 178.0 ± 2.3 Ma). Two samples from Altamira show similar model ages (sample FB-43: 86.6 ± 4.9 Ma; sample FB-46: 99.5 ± 17.6 Ma). A two-point isochron with these samples yield an age of 83.7 ± 4.6 Ma. Although two-point isochrons are highly unreliable, the obtained isochron age (and model ages) is noteworthy because it indicates a Late Cretaceous age for this deposit. Although some Cretaceous deposits have been
described near the city of Copiapó (Cisternas and Hermosilla, 2006), our data indicates that Cretaceous Manto-type Cu deposit extend farther north than previously reported.

The Re and Os contents and model ages obtained from the Franke chalcocite sample are inconsistent, which indicates that the Re-Os system was possibly disturbed in sample FB-43 by highly oxidized fluids that affected the deposit and are responsible for the Cu-oxide mineralization.

4.2 Source of metals in the Chilean IOCG clan

Initial Os ratios calculated \((\text{Os}_c)\) based on reported ages for the deposits studied here are shown in Table 2.

Previous Re-Os work on sulfides and magnetite from the world class Candelaria IOCG deposit in northern Chile yielded a Re-Os isochron with an initial \(^{187}\text{Os}^{188}\text{Os}\) ratio of 0.36 ± 0.10 and a 110 ± 9 Ma age \((n = 5; \text{MSWD} = 1.4)\), which is consistent with two Re-Os molybdenite ages \((115.2 ± 0.6 \text{ Ma}, 114.2 ± 0.6 \text{ Ma}; \text{Mathur et al., 2002})\). Based on their data, these authors concluded that the Candelaria ores are most likely of magmatic-hydrothermal origin and derived from a mixture of crustal and mantle components. Calculated initial Os ratios for Mantoverde were even lower \((n = 2; 0.20 ± 0.05)\) supporting a magmatic-hydrothermal origin for these IOCGs (Mathur et al., 2002).

In contrast, magnetite from three Chilean IOA deposits have calculated initial Os ratios that are much more radiogenic \((\text{Cerro Negro Norte}: 7.6 ± 0.7; \text{Cerro Imán}: 2.2 ± 0.2; \text{El Romeral}: 1.5 ± 0.3)\), and were interpreted by Mathur et al. (2002) as the magnetite ore was probably derived from leaching of sedimentary rocks by basin-derived, non-magmatic metalliferous brines.

Tristá-Aguilera et al. (2006) reported a four point isochron for the Lince-Estefania
Manto-type Cu deposit in the Coastal Cordillera of northern Chile. The chalcocite-bornite isochron yielded a poorly constrained age of mineralization (160 ± 16 Ma; MSWD = 1.8) and an initial Os ratio of 1.06 ± 0.09. The two-point isochron for Altamira deposit obtained in the present study yielded an initial Os ratio of 1.17 ± 0.15, which is similar to the initial Os ratio obtained from the Lince-Estefania isochron.

Calculated initial Os ratios reported in Table 2 should be considered with caution because of the high uncertainties associated with the $^{187}\text{Re}/^{188}\text{Os}$ and $^{187}\text{Os}/^{188}\text{Os}$ ratios. Regardless, a general trend can be observed with a more radiogenic signature in IOCGs (~2.0-2.4) in comparison with IOA (initial Os ratios ~1.0-1.2) and Manto-type Cu deposits (Os$_i$ ratio ~1.1). The data presented here is in contrast with the data presented by Mathur et al. (2002) where Mantoverde and Candelaria have lower initial Os ratios (0.2 and 0.36, respectively) in comparison with IOA deposits (El Romeral: 1.5; Cerro Imán: 2.2; Cerro Negro Norte: 7.6). Based on our new data coupled with previously reported Re-Os studies (Ruiz et al., 1997; Mathur et al., 2002), we found that IOA deposits have initial Os ratios than range between 0.8 to 2.2, whereas Manto-type Cu deposits have a more restricted range (1.0-1.2), although Cretaceous bitumen-bearing Manto-type deposits will most likely be characterized by higher initial Os ratios as is the case for El Soldado (Ruiz et al., 1997) (Fig. 8). On the other hand, the different values observed for Mantoverde and Candelaria (Mathur et al., 2002; this work) could reflect different pulses of mineralization with different Os sources, as has been reported for the Chuquicamata porphyry Cu-Mo deposit, where pyrites from the quartz-sericite alteration event have an initial Os of ~1.0, whereas chalcopyrite from the potassic alteration have an initial of ca. 0.16 (Mathur et al., 2000). Furthermore, published Re-Os data for other porphyry Cu-Mo systems in the Chilean Andes also show a wide range in initial Os ratios (i.e., 0.16-5.2; Mathur et al., 2000), which
suggests that Andean magmatic-hydrothermal system can have a significant variation in initial ratios and that metals in these systems can be derived from the magmatic-hydrothermal system with variable contributions from basement and/or volcanic host rocks.

4.3 Re and Os concentrations in mineral deposits

Additional inferences regarding the origin of the mineralization can be made based on the concentration of Re and total Os (Fig. 9), the Re/Os ratio and the amount of radiogenic 187Os in sulfides and oxides. As stated above the crust has evolved towards a high Re/Os ratio, with sedimentary rocks such as black shales having a very high Re (>500 ppb; Shirey and Walker, 1998) and high radiogenic Os content, in contrast with mantle derived rocks which are characterized by high common Os and low Re, >1 ppb and <1 ppb, respectively (e.g., Gao et al. 2002; Walker at el., 2002). It follows then that ores derived from a mantle source will be characterized by high Os and low Re content, whereas ores derived from a crustal more radiogenic source will have high Re and low common Os concentrations. Here we discuss our data and previously published Re-Os data on (magmatic)-hydrothermal and sediment-hosted mineral deposits to provide further evidence to support a magmatic-hydrothermal origin for the Chilean IOCG-IOA deposits.

Fe oxide Cu-Au (IOCG) and Fe oxide-apatite (IOA) deposits

Mathur et al. (2002) reported Re and total Os concentrations in sulfides and magnetite from Candelaria (chalcopyrite: 1.6 to 4.9 ppb Re and 13 to 23 ppt Os; magnetite: 0.3 to 3.0 ppb Re and 6 to 17 ppt Os), Mantoverde (magnetite: 4.2 and 6.0 ppb Re, 11 and 17 ppt Os), El Romeral (magnetite: 0.34 ppb Re and 11 ppt Os), Cerro Negro Norte (magnetite: 0.88 ppb Re and 76 ppt Os), and Cerro Imán (magnetite: 0.80 ppb Re
and 38 ppt Os) (Figs. 1, 9). Our data shows similar concentrations for two chalcopyrite samples from Candelaria (2.9 and 15.0 ppb Re, 3.4 and 27.2 ppt Os), and higher concentrations for pyrite and magnetite from Mantoverde (11.3 to 32.5 ppb Re and 18.8 to 49.3 ppt Os). The other three IOCGs (Diego de Almagro, Casualidad and Barreal Seco) show Re and Os contents that range from 2.0 to 149 ppb and less than 17 ppt Os (Table 2). In comparison, IOA deposits show much higher Re (0.7 to 182 ppb) and Os (0 to 156 ppt) concentrations (Figs. 7, 9). Overall, pyrite samples show the highest Re and Os contents, followed by chalcopyrite and magnetite. A similar trend is observed for sulfides and magnetite from Candelaria. This suggests that during co-precipitation of magnetite and sulfides both Re and Os will be preferentially concentrated in the sulfide phase following the chalcophile nature of these elements. This is particularly evident in IOA deposits (i.e., El Romeral, Los Colorados), which show higher Re and Os contents in pyrite and lower concentrations in magnetite, which explains the large dispersion of data points in Figure 9 and 10. Sulfides in IOA deposits are present as minor phases, it follows then that sulfides will concentrate the available Re and Os (and other metals) when in competition with magnetite. This is consistent with reported high base and precious metals (Co, Ni, Cu, Ag, Au) content within pyrite in comparison with magnetite from Los Colorados IOA (Knipping et al., 2015b; Reich et al., 2016). The variable Re and Os concentrations observed in some magnetite samples might be due to the presence of minute sulfide inclusions as observed in studied polished sections (Fig. 6), whereas in sulfides the variable concentration is probably related to the “nugget effect”. In all these cases, total Os is mostly (>95%) radiogenic 187Os.

On an additional note, rhenium and total Os concentrations reported for chalcopyrite from the Lala IOCG deposit, China, are significantly higher (27.1 to 1477
ppb Re, 1080 to 20500 ppt total Os, 8 to 310 ppt common Os; initial Os ratio 8.3 ± 4.0; Zhimin and Yali, 2013) than those reported for Andean IOCGs and IOAs. Similarly, higher Re and total Os contents in sulfides (i.e., pyrite, chalcopyrite, bornite, chalcocite) have been reported for Olympic Dam, Australia (37.21 to 420.9 ppb Re, 2300 to 16080 ppt total Os, 450 to 5780 ppt common Os; initial Os ratio 2.9 ± 3.8; McInnes et al., 2008). The highly contrasting concentration values between Andean IOCGs and Lala and Olympic Dam deposits (Fig. 10) suggest a more radiogenic crustal source for the latter deposits. Furthermore, it suggests that the crust played a fundamental role in the formation of these deposits, with possible contribution of Re (and Os) from host rocks.

Stratabound Cu(-Ag)/Manto-type deposits

The Lince-Estefania Manto-type Cu(-Ag) deposit shows similar Re and Os concentrations than those reported for Andean IOCGs (0.19 to 2.49 ppb Re, 7 to 26 ppt Os; Tristá-Aguilera et al., 2006). On the other hand, the Re and Os concentrations reported for Franke and Altamira are much higher (Table 2) reflecting a more radiogenic source than for Lince-Estefania. A single analysis from a chalcopyrite sample from El Soldado has the highest Re and Os concentrations reported so far for Manto-type deposits (i.e., 15409 ppb Re and 65355 ppt Os; Ruiz et al., 1997).

Chilean porphyry Cu deposits

Freydier et al. (1997) performed the first tentative Re-Os study on sulfides from porphyry Cu systems. These authors analyzed different sulfide phases (pyrite, bornite, chalcopyrite, and sphalerite) from El Teniente, Chile and Andacollo porphyry Cu systems. The results obtained show Os concentrations ranging from 42 to 874 ppt, and Re content
less than <0.18 ppb. The initial osmium ratios calculated using the reported age of 5 Ma for El Teniente samples were between 0.17-0.22. Similar initial values (0.2-1.1 at 100 Ma) were calculated using pyrite samples from Andacollo, however these samples are more enriched in Re (4.9-100 ppb) and Os (16-1982 ppt). Following this work by Freydier et al. (1997), Mathur et al. (2000) studied five porphyry Cu deposits from Chile (Chuquicamata, El Salvador, Quebrada Blanca, Collahuasi, Cerro Colorado) and one deposit from Argentina (Agua Rica). Ages and initial osmium ratios were obtained using the isochron method for Chuquicamata and El Salvador. A major conclusion of this study revealed a major correspondence between the initial ratio and copper tonnage, with large deposits having a higher contribution from a mantle source (Mathur et al., 2000) than smaller deposits. Further, in both large and relatively small deposits, the crust played an active role, but it is more significant in smaller deposits. Rhenium and Os concentrations for these porphyry deposits range from 0.2 to 26 ppb Re and 6 to 24 ppt Os, with two pyrite samples from Quebrada Blanca with higher Os content (238-244 ppt).

Sulfides from porphyry Cu systems from other areas in the world also show low Re and Os contents (i.e., 1.7-20 ppb Re, 6-25 ppt Os; Barra et al., 2003).

Volcanogenic massive sulfide (VMS) deposits

Although no VMS deposits have been identified in the northern part of Chile, the deposits of the Punta del Cobre district were once thought to have formed by exhalative processes in a submarine environment (Camus, 1980). Later studies suggest that these deposits are IOCGs probably related to the emplacement of deep igneous stocks (Marshick and Fontboté, 1996, 2001). Hence VMS deposits are discussed here as a member of the hydrothermal family.
Limited Re-Os studies have focused on volcanogenic massive sulfide (VMS) deposits. In the Tharsis and Rio Tinto deposits of the Iberian Pyrite Belt, pyrite rich samples show Re and Os contents that range from 0.3 to 66 ppb and from 51 to 669 ppt Os (Mathur et al., 1999). Rhenium and Os concentrations for the Waniibuchi Kuroko-type deposit, Japan range from 3.52 to 50.6 ppb and from 20.1 to 92.9 ppt, respectively (Terakado, 2001), whereas the Iimori Besshi-type VMS in Japan shows higher Re and Os concentrations (24.28 to 300.4 ppb Re, 224.9 to 660.5 ppt Os; Nozaki et al., 2010). Higher Re and Os contents (80.2 to 1543.2 ppb Re; 307 to 8830 ppt Os) were reported by Hou et al. (2003) for the Gacun deposit, China.

In all these magmatic-hydrothermal deposits the Os present is mostly radiogenic 187Os, with minor to scarce common Os.

Sediment-hosted stratiform Cu deposits

Sediment-hosted stratiform deposits are formed mainly by leaching of metals from the host rocks, and hence the sulfide ore is usually characterized by high Re content, high radiogenic Os (Fig. 10) and high Re/Os ratios.

The Central African Copperbelt is the second world’s largest sediment-hosted stratiform copper province. Barra et al. (2004), using Re and Os systematics applied to the ore minerals determined two mineralization events: an early diagenetic event at ca. 825 Ma and a second event at ~576 Ma consistent with the Lufilian Orogeny of Pan-African age. The older event is significantly more radiogenic that the Pan-African event suggesting that the mineralizing fluids accessed different sources of Os and possibly different rock types. Rhenium and Os concentrations are higher for the older event (Konkola mine chalcopyrite: 9.4 to 49.3 ppb Re, 105 to 791 ppt Os), whereas the younger (metamorphic?) event is
characterized by lower concentrations (0.34 to 5.8 ppb Re, 17 to 75 ppt Os). These concentrations are consistent with those reported for the Kamoto (Muchez et al., 2015), and the Kipushi deposit (Schneider et al., 2007) in the DRC.

Copper-rich black shales from the Lubin mine in the Upper Permian Polish Kupferschiefer, show highly variable Re (249.4 to 22174 ppb) and Os (483 to 22980 ppt) abundances (Pašava et al., 2007a; Alderton et al., 2016). Noble metal-rich (Cu-poor) calcareous black shale from the Polkowice mine have a more restricted range of Re (212.1 to 558.3 ppb) and Os (881.2 to 2072.2 ppt) content (Pašava et al., 2007b). Chalcocite in sandstones from the Polkowice East site has much higher Re (1880-4360 ppb) and Os (12100-13470 ppt) concentrations (Alderton et al., 2016).

The Carboniferous Red Dog black shale-hosted Zn-Pb-Ag deposit, Alaska also shows significant Re and Os concentrations, however in this case the amount of common Os is significant. Pyrite samples from this deposit have Re and total Os contents that range from 15.3 to 383 ppb Re and 108 to 3637 ppt Os (Morelli et al., 2004).

Overall, sediment-hosted mineral deposits show higher Re and Os contents in comparison with magmatic-hydrothermal deposits such as porphyry style deposits. Rhenium and Os concentrations in Andean IOCG and IOA are similar to those found in porphyry Cu deposits in Chile, which suggest that Andean IOCGs are formed by similar magmatic-hydrothermal processes related to the emplacement of plutonic rocks with little to minor contribution of metals (and Re and Os) from leaching sedimentary rocks.

5. CONCLUSIONS

The Re-Os data presented in this study provide useful information regarding the age of mineralization and the source of metals. Our data, coupled with previously published Re
and Os information for the central Andes IOCG clan (e.g., Mathur et al., 2002; Tristá-Aguilera et al., 2002), indicate that the source of Re and Os and by inference the metals contained in these deposits has a crustal origin possibly derived from cooling intrusions with moderate contributions from leaching of volcanic host rocks. A link between mineralization and intrusions is also sustained by the Re-Os model ages reported here in good agreement with published geochronology of associated plutons.

Rhenium and Os contents in Chilean IOCG deposits (i.e., Candelaria, Mantoverde) are similar to those reported for porphyry Cu-Mo systems in the Andes (Mathur et al., 2000). Furthermore, the Os present in sulfides and oxides in both deposit types are dominated by radiogenic 187Os with little common Os. This suggests that IOCGs and porphyry Cu systems in the Andes formed by similar magmatic-hydrothermal processes. The much higher Re and Os concentrations observed in other IOCGs (e.g., Lala, China; Olympic Dam, Australia), and in sediment-hosted stratabound Cu deposits (e.g., Central African Copperbelt and the Kupschiefer) suggests that in these cases leaching of basement rocks by oxidized saline brines played a more fundamental role in the formation of these deposits.

The data presented here also shows that Re and Os are preferentially concentrated in the sulfide phase rather than in oxides (magnetite), and that the presence of Re and Os in magnetite might be related to small micron-size sulfide inclusions (Fig. 6). This conclusion supports a two-stage model (igneous followed by magmatic-hydrothermal stage) for the formation of Andean IOA deposits as proposed by Knipping et al. (2015a, b). In this model, magmatic magnetite crystals ascend by flotation within the magmatic chamber, meanwhile the concomitant Cl-rich magmatic-hydrothermal fluid precipitates hydrothermal magnetite, sometimes as overgrowth on primary magnetite, and transports additional Fe in
solution with Cu-Au (and possibly other metals including Re). In this model, sulfides are of magmatic-hydrothermal origin and are related to the late stage of the IOA formation.

We conclude that Andean IOCG (and IOA) deposits were formed by magmatic-hydrothermal processes related to the formation and emplacement of crustal derived magmas, with little involvement of basinal brines.

Acknowledgments

This research was funded by Fondecyt Grant #1140780 “Metallogenesis of the Mesozoic magmatic arc of northern Chile: Testing the IOCG connection using a multi-proxy geochemical approach” to F. Barra. We acknowledge funding from the Millennium Science Initiative (MSI) through Millennium Nucleus for Metal Tracing along Subduction Grant NC130065, as well support from FONDAP project15090013 “Centro de Excelencia en Geotermia de Los Andes, CEGA.” We also thank Compañía Minera del Pacífico (CAP) for logistical support. Finally we acknowledge chief editor Franco Pirajno, and reviewers Marcos Zentilli and Roberto Xavier for comments that helped improve this manuscript.
References

Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 1:100.000, Serie Geología Básica, 89.

Región de Antofagasta, Chile. XIII Congreso Geológico Chileno. Actas, 3 p. Antofagasta, Chile.

of Mg-rich actinolite; implications for Kiruna-type iron deposits. J Petrol 49, 225-238.

Nyström, J.O., Henríquez, F., 1994, Magmatic features of iron ores of the Kiruna-type in Chile and Sweden: Ore textures and magnetite geochemistry. Econ Geol 89, 820–839.

convergent plate boundary. Tectonics 18, 895-910.

(LLHR) sulfides: the Harnas gold deposit, Southwest Sweden, records continental-scale
tectonic events. Econ Geol 95, 1657-1671.

Zhimin, Z., Yali, S., 2013. Direct Re-Os dating of chalcopyrite from the Lala IOCG deposit
in the Kangdian copper belt, China. Econ Geol 108, 871-882.
Figure Captions

Fig. 1. Location of main ore deposits from the Andean IOCG clan within the Coastal Cordillera of northern Chile. Trace of the Atacama Fault System (AFS) from Veloso et al. (2015).

Fig. 2. Schematic representation of the two proposed models for the origin of IOCG deposits. (A) Magmatic-hydrothermal model: fluids and metals are of magmatic origin with minor contribution from basement and/or volcanic rocks; (B) Fluids are derived from sedimentary basins and are heated by an igneous source. Metals are leached from sedimentary and/or volcanic host rocks. Also shown are the different styles of mineralization and the possible link with deeper IOA deposits.

Fig. 3. Vertical mineral zoning showing the transition from iron oxide-apatite (IOA) deposit at depth towards magnetite-rich IOCG at intermediate levels and hematite-rich IOCG and the top. Also shown are the different styles of mineralization observed for the Andean IOCG clan.

Fig. 4. Tectonic evolution during the Late Jurassic-Early Cretaceous to Middle Cretaceous at 21º-27º lat. S. (a) The first stage is characterized by a magmatic arc-back arc basin, and the emplacement of La Negra formation which is host to several Cu-Manto deposits. (b) The Middle Cretaceous is characterized by extensive deformation, uplift of the Tarapacá basin to form the proto-Cordillera de Domeyko, and development of the Atacama Fault System. Modified from Mpodozis and Ramos (1990).

Fig. 5. Tectonic evolution during the Jurassic to Early Cretaceous at 27º-33º lat. S. This
segment is characterized by a Jurassic magmatic arc and a back-arc sedimentary basin (a), followed during the Early Cretaceous by the development of an aborted marginal basin and emplacement of large volumes of volcanic rocks within the basin. Modified from Mpodozis and Ramos (1990).

Fig. 6. Reflected light photomicrographs of representative samples from the studied deposits. (A) Hematite breccias, Mantoverde; (B) Massive pyrite, Mantoverde; (C) Chalcopyrite with small pyrite and magnetite inclusions, Candelaria; (D) Hematite breccias with pyrite, Diego de Almagro; (E) Magnetite with chalcopyrite and pyrite inclusions, El Romeral; (F) Pyrite with chalcopyrite inclusions, El Romeral; (G) Massive magnetite crosscut by thin pyrite veinlet, Los Colorados; (H) Lava amydaloid filled with chalcocite, Altamira. Abbreviations: cc: chalcocite, cp: chalcopyrite, py: pyrite, hem: hematite, mt: magnetite.

Fig. 7. Log plot of Re (ppb) and Os (ppt) concentrations for the analyzed samples.

Fig. 8. Comparison of initial Os ratios for the Chilean IOCG clan with Andean porphyry Cu systems. Note relative similar values for all ore deposit types. More radiogenic values (>3) might be related to metals derived from sedimentary basins. Data from Mathur et al. (2002) and this study. Data for Lala, China from Zhmin and Yali (2013). See text for discussion.

Fig. 9. Compiled log plot of Re (ppb) and Os (ppt) concentrations for porphyry Cu-Mo, and the Andean IOCG deposits. Source: Freydier et al. (1997); Ruiz et al. (1997); Mathur et al. (2000); Mathur et al. (2002), and this work. High dispersion of Os and Re content in porphyry systems might be related to molybdenite micro-inclusions.
Fig. 10. Comparison of Re and Os concentrations in several ore deposit types. Os in chromites and magmatic deposits is mostly common Os, whereas magmatic-hydrothermal deposits shave mostly radiogenic Os. The Olympic Dam and Lala IOCGs show a much higher Re and Os content than Andean IOCGs, possibly indicating an origin from basin derived fluids. See text for discussion.
Figure 1
Figure 2
Figure 3: Diagram illustrating various mineral deposits and their characteristics.

- **Iron Oxide Cu-Au Deposit (Hematite-rich IOCG):**
 - Sulfide (chalcopyrite ± pyrite) and host rock clasts in a specular hematite matrix
 - Breccia style mineralization

- **Iron Oxide Cu-Au Deposit (Magnetite-rich IOCG):**
 - Disseminated, veinlets and massive sulfides ore bodies in magnetite (chalcopyrite ± bornite ± pyrite)
 - Mantle style mineralization

- **IOCG-IOA Transition:**
 - Diorite/Granodiorite dike(s)

- **Iron Oxide - Apatite Deposit (IOA):**
 - Disseminated sulfides in magnetite (pyrite ± chalcopyrite)
 - Actinolite ± apatite
 - Massive magnetite dike

- **Volcanic host rocks:**

- **Diorite/Granodiorite Intrusion:**

Not to scale
Figure 6
Figure 7
Figure 9
Figure 10
Graphical abstract
Highlights
We report new Re-Os data for five IOCG deposits, three IOAs, and two Manto-type deposits from the Chilean IOCG clan.
This new information coupled with previously published Re-Os data is used here to constrain the age of these deposits and provide new insights on the source of metals in the Chilean IOCG clan.
Re and Os concentrations and initial Os ratios are similar to those reported for Andean porphyry Cu deposits, which suggests that both deposit-types were formed by similar magmatic-hydrothermal processes and that the metals contained in these deposits were derived from crustal sources.
We conclude that Andean IOCG (and IOA) deposits in northern Chile were formed mainly by magmatic-hydrothermal processes related to the formation and emplacement of magmas with moderate contribution from leaching of basement and/or volcanic host rocks.
Table 1. Main geological features of studied deposits

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Tonnage</th>
<th>Host rocks</th>
<th>Related intrusive rock(s)</th>
<th>Main structures</th>
<th>Age (Ma)</th>
<th>Mineralization style</th>
<th>Alteration</th>
<th>Mineralization</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Oxide Cu-Au deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantoverde</td>
<td>Oxides: 42.7 Mt @0.58% Cu; sulfides: 440 Mt @0.56% Cu, 0.12g/t Au</td>
<td>Basaltic andesite and andesite lava flows and volcaniclastic rocks</td>
<td>Granodiorite, diorite</td>
<td>Mantoverde fault: N15-20W/40-50E</td>
<td>128.9 ± 0.6 Ma U-Pb zircon</td>
<td>Veins, stockworks, breccias</td>
<td>K-feld-biot-turm-qz-chl-ser-scap-carb</td>
<td>py-cp-gold; mt-hem; Cu oxides</td>
<td>Gelcich et al. (2005); Benavides et al. (2007); Rieger et al. (2010; 2012)</td>
</tr>
<tr>
<td>Candelaria</td>
<td>408 Mt @0.6% Cu, 0.1g/t Au</td>
<td>Andesitic lavas and volcaniclastic ics</td>
<td>Diorite body, dacite dikes</td>
<td>NNW-NW faults</td>
<td>115.2 ± 0.6 Ma Re-Os molybdenite</td>
<td>Veins, stockworks, breccias, mantos</td>
<td>bio, K-feld, alb, qz, amp, scap, skarn</td>
<td>mtlhem; po-pp-cp</td>
<td>Ryan et al. (1995); Marschik & Fontbote (2001), Mathur et al. (2002)</td>
</tr>
<tr>
<td>Barreal Seco</td>
<td>Oxides: 20 Mt @0.8% Cu; Sulfides: 50 Mt @0.8%C u</td>
<td>Andesite flows and volcaniclastic ics; sedimentary rocks, evaporites</td>
<td>Porphyritic diorite dikes</td>
<td>NNW-WNW faults</td>
<td>n.d.</td>
<td>Breccia pipe, veins</td>
<td>alb, chl, qz, cal, gyp</td>
<td>py-cp; hem; Cu oxides</td>
<td>Hopper & Correa (2000); Correa (2000)</td>
</tr>
<tr>
<td>Diego de Almagro</td>
<td>70Mt @0.65% Cu, 0.05g/t Au</td>
<td>Andesitic lavas and volcaniclastic ics</td>
<td>Andesite and diorite porphyry dikes</td>
<td>NS, NNW-NW faults</td>
<td>n.d.</td>
<td>breccia pipe, veins</td>
<td>bio, K-feld, chl, ser, qz, cal, gyp</td>
<td>py-cp-bn; mtlhem; Cu oxides</td>
<td>Herrera et al. (2008); Loyola et al. (2015)</td>
</tr>
<tr>
<td>Casualidad</td>
<td>300Mt @0.5%C u</td>
<td>Andesitic volcaniclastic ics, tuff, andesite porphyry sill</td>
<td>Diorite dikes, monzodiorite</td>
<td>NW-NE faults</td>
<td>99.8 ± 0.6 Ma Ar/Ar biotite</td>
<td>Veins, stockworks, breccias, mantos</td>
<td>bio, K-feld, alb, chl, ep, act, cal, qz, ser</td>
<td>py-cp ± bn, mtlhm, Cu oxides</td>
<td>Rivera et al. (2009); Kovacic et al. (2012)</td>
</tr>
<tr>
<td>Iron oxide-apatite deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmen</td>
<td>n.r.</td>
<td>Andesitic lava</td>
<td>Diorite dikes and quartz diorite plut</td>
<td>EW, NE faults</td>
<td>131.0 ± 1.0 Ma U-Pb apatite</td>
<td>Massive, dikies, breccia</td>
<td>act, ap, chl, qz, ser, clays</td>
<td>mtlhem; py-cp</td>
<td>Gelcich et al. (2005)</td>
</tr>
<tr>
<td>Gálvez (2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Colorados</td>
<td>491Mt @36.5% Fe</td>
<td>Basaltic andesite and andesite lava flows and volcaniclastic rocks</td>
<td>Diorite-microdiorite pluton</td>
<td>N10-15E; NS-N10W</td>
<td>~110-115 Ma</td>
<td>Massive tabular, dikies, breccia</td>
<td>act, ap, chl, K-feld, turn, ser, clays</td>
<td>mtlhem; py-cp</td>
<td>Pichon (1981); Oyarzún & Frutos (1984); Knipping et al. (2015a,</td>
</tr>
<tr>
<td>Location</td>
<td>Resource</td>
<td>Grade</td>
<td>Rock Type</td>
<td>Fault System</td>
<td>Age (Ma)</td>
<td>Mineralization</td>
<td>Main Minerals</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>El Romeral</td>
<td>Manto</td>
<td>451Mt @28.3%Fe</td>
<td>Andesite porphyry, metasedimentary rocks</td>
<td>Diorite, granodiorite pluton</td>
<td>Romeral fault: NS; NNE fault</td>
<td>118.5 ± 0.2 Ma; Ar/Ar biotite</td>
<td>massive, veins, disseminated</td>
<td>act, ap, bio, chl</td>
<td>mt; py-cp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mantotype Cu deposit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franke</td>
<td>Manto</td>
<td>27Mt @0.82%Cu</td>
<td>Andesite flows and volcanoclastic rocks</td>
<td>Andesite flows and volcanoclastic rocks</td>
<td>NNW, WNW faults</td>
<td>n.d.</td>
<td>Veins, breccias, mantos</td>
<td>alb, chl, ep, cal, clays</td>
<td>py-cp-bn-cc; mt-hem; Cu oxides</td>
</tr>
<tr>
<td>Altamira</td>
<td>Manto</td>
<td>3Mt @1.1%Cu</td>
<td>Andesite flows and sedimentary rocks</td>
<td>Andesite flows and sedimentary rocks</td>
<td>NNW, WNW faults</td>
<td>n.d.</td>
<td>Veins, breccias, mantos</td>
<td>alb, chl, ep, cal, clays</td>
<td>py-cp-bn-cc-cv; mt-hem; Cu oxides</td>
</tr>
</tbody>
</table>

Abbreviations: act: actinolite; alb: albite; amp: amphibole; ap: apatite; bio: biotite; bn: bornite; cal: calcite; carb: carbonates; chl: chlorite; cc: chalcocite; cp: chalcopyrite; cv: covellite; ep: epidote; gyp: gypsum; hem: hematite; K-feld: K-feldspar; mt: magnetite; po: pyrrhotite; py: pyrite; qz: quartz; scap: scapolite; ser: sericite; turm: turmaline
Table 2. Re and Os data for Andean IOCG deposits from northern Chile

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Sample name</th>
<th>Mineral</th>
<th>Total Re (ppb)</th>
<th>±</th>
<th>Total Os (ppb)</th>
<th>±</th>
<th>% 187 Osr</th>
<th>187Re/188Os</th>
<th>±</th>
<th>187Os/188Os</th>
<th>±</th>
<th>Model age</th>
<th>±</th>
<th>Osi (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron oxide – Cu-Au deposits</td>
<td></td>
</tr>
<tr>
<td>Manto verde</td>
<td>FB-1</td>
<td>pyrite</td>
<td>11.29</td>
<td>0.05</td>
<td>18.8</td>
<td>10.1</td>
<td>99.2</td>
<td>44499.2</td>
<td>17920.4</td>
<td>110.6</td>
<td>44.6</td>
<td>148.0</td>
<td>2.2</td>
<td>14.9</td>
</tr>
<tr>
<td>(~129 Ma)</td>
<td>FB-3</td>
<td>pyrite</td>
<td>17.33</td>
<td>0.05</td>
<td>21.5</td>
<td>27.8</td>
<td>99.7</td>
<td>159407.8</td>
<td>149628.7</td>
<td>306.5</td>
<td>287.7</td>
<td>115.0</td>
<td>1.7</td>
<td>(-)</td>
</tr>
<tr>
<td></td>
<td>FB-8</td>
<td>magnetite</td>
<td>32.47</td>
<td>0.12</td>
<td>49.3</td>
<td>7.8</td>
<td>99.0</td>
<td>38439.1</td>
<td>46266.2</td>
<td>85.4</td>
<td>10.4</td>
<td>131.9</td>
<td>1.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Candelaria</td>
<td>FB-11</td>
<td>chalcopyrite</td>
<td>2.09</td>
<td>0.01</td>
<td>3.4</td>
<td>27.6</td>
<td>99.8</td>
<td>336729.4</td>
<td>1602395.7</td>
<td>613.6</td>
<td>3575.9</td>
<td>109.1</td>
<td>4.6</td>
<td>(-)</td>
</tr>
<tr>
<td>(~115 Ma)</td>
<td>FB-15</td>
<td>chalcopyrite</td>
<td>14.98</td>
<td>0.06</td>
<td>27.2</td>
<td>2.0</td>
<td>96.2</td>
<td>101260.0</td>
<td>699.7</td>
<td>21.8</td>
<td>1.5</td>
<td>124.2</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Barreal Seco</td>
<td>FB-48</td>
<td>chalcopyrite</td>
<td>149.30</td>
<td>0.45</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(?)</td>
<td>FB-49</td>
<td>chalcopyrite</td>
<td>4.08</td>
<td>0.02</td>
<td>8.8</td>
<td>1.8</td>
<td>99.7</td>
<td>160017.1</td>
<td>330240.4</td>
<td>277.8</td>
<td>576.1</td>
<td>103.3</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td>Diego de Almagro</td>
<td>FB-50</td>
<td>pyrite</td>
<td>3.85</td>
<td>0.02</td>
<td>16.9</td>
<td>0.6</td>
<td>93.1</td>
<td>3838.3</td>
<td>250.1</td>
<td>11.6</td>
<td>0.9</td>
<td>168.1</td>
<td>9.6</td>
<td>2.0</td>
</tr>
<tr>
<td>(150 Ma?)</td>
<td></td>
</tr>
<tr>
<td>Casualidad</td>
<td>FB-28</td>
<td>chalcopyrite</td>
<td>2.23</td>
<td>0.02</td>
<td>0.2</td>
<td>0.7</td>
<td>89.5</td>
<td>150723.5</td>
<td>521631.3</td>
<td>14.7</td>
<td>50.8</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>(~100 Ma)</td>
<td>FB-30</td>
<td>chalcopyrite</td>
<td>67.99</td>
<td>0.27</td>
<td>4.3</td>
<td>96.2</td>
<td>2667228.2</td>
<td>1591757.717</td>
<td>31.3</td>
<td>1868.6</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barreal Seco</td>
<td>FB-32</td>
<td>pyrite</td>
<td>88.93</td>
<td>0.33</td>
<td>14.2</td>
<td>120.7</td>
<td>99.9</td>
<td>1784968.22</td>
<td>1078668.539</td>
<td>4511.3</td>
<td>276219.2</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>FB-32-r</td>
<td>pyrite</td>
<td>19.56</td>
<td>0.06</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB-32-r</td>
<td>pyrite</td>
<td>25.65</td>
<td>0.08</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron oxide – apatite deposits</td>
<td></td>
</tr>
<tr>
<td>Carmen</td>
<td>FB-22</td>
<td>magnetite</td>
<td>43.35</td>
<td>0.20</td>
<td>0.8</td>
<td>0.3</td>
<td>82.5</td>
<td>373004.9</td>
<td>181467.3</td>
<td>5.1</td>
<td>2.5</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>(~131 Ma)</td>
<td>FB-23</td>
<td>magnetite</td>
<td>88.35</td>
<td>0.32</td>
<td>3.6</td>
<td>0.2</td>
<td>76.9</td>
<td>169000.5</td>
<td>16534.3</td>
<td>3.6</td>
<td>0.3</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>Los Colores</td>
<td>FB-19</td>
<td>magnetite</td>
<td>0.71</td>
<td>0.01</td>
<td>1.0</td>
<td>2.2</td>
<td>98.1</td>
<td>25013.8</td>
<td>44853.0</td>
<td>49.2</td>
<td>88.2</td>
<td>116.0</td>
<td>6.2</td>
<td>1.2</td>
</tr>
<tr>
<td>(~110-115 Ma)</td>
<td>FB-21</td>
<td>magnetite</td>
<td>128.76</td>
<td>0.47</td>
<td>0.2</td>
<td>14.0</td>
<td>96.2</td>
<td>116311044.5</td>
<td>5318256651</td>
<td>311.5</td>
<td>1424.19</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FB-33</td>
<td>pyrite</td>
<td>163.49</td>
<td>0.49</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FB-34</td>
<td>pyrite</td>
<td>182.60</td>
<td>0.55</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FB-34-r</td>
<td>pyrite</td>
<td>214.64</td>
<td>0.64</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Romeral</td>
<td>FB-36</td>
<td>pyrite</td>
<td>132.92</td>
<td>0.40</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(~119 Ma)</td>
<td>FB-36-r</td>
<td>pyrite</td>
<td>128.39</td>
<td>0.39</td>
<td>156.2</td>
<td>17.0</td>
<td>99.8</td>
<td>486425.6</td>
<td>365236.3</td>
<td>468.8</td>
<td>352.7</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FB-37</td>
<td>pyrite</td>
<td>10.83</td>
<td>0.03</td>
<td>28.6</td>
<td>1.3</td>
<td>98.2</td>
<td>21593.4</td>
<td>2371.5</td>
<td>43.5</td>
<td>5.1</td>
<td>118.5</td>
<td>4.9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>FB-39</td>
<td>pyrite</td>
<td>56.71</td>
<td>0.17</td>
<td>b.d. l.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FB-40</td>
<td>pyrite</td>
<td>73.99</td>
<td>0.22</td>
<td>124.9</td>
<td>17.1</td>
<td>100.0</td>
<td>1308640.0</td>
<td>1542418.9</td>
<td>1755.7</td>
<td>2071.9</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
</tbody>
</table>

Manto-type Cu deposits
<table>
<thead>
<tr>
<th>Location</th>
<th>FB-26</th>
<th>chalcolite</th>
<th>253.15</th>
<th>0.94</th>
<th>401.0</th>
<th>7.5</th>
<th>97.9</th>
<th>18456.2</th>
<th>292.5</th>
<th>39.0</th>
<th>0.6</th>
<th>124.0</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altamira</td>
<td>FB-43</td>
<td>chalcolite</td>
<td>160.86</td>
<td>0.49</td>
<td>639.1</td>
<td>11.5</td>
<td>98.1</td>
<td>14011.0</td>
<td>287.3</td>
<td>42.4</td>
<td>1.0</td>
<td>178.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>FB-46</td>
<td>chalcolite</td>
<td>14.99</td>
<td>0.05</td>
<td>33.7</td>
<td>1.1</td>
<td>93.3</td>
<td>7655.0</td>
<td>369.9</td>
<td>11.9</td>
<td>0.7</td>
<td>86.6</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.80</td>
<td>0.11</td>
<td>159.4</td>
<td>2.9</td>
<td>74.3</td>
<td>1394.3</td>
<td>35.9</td>
<td>3.1</td>
<td>0.1</td>
<td>99.5</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Uncertainties reported at the 2sigma level. 187Os is calculated using an assumed initial ratio of 0.8 ± 0.2. Model age are calculated using 187Os/187Re = e$^{-\lambda t}$. n.r.: not reported; b.d.l.: below detection limit; * from two-point isochron; (-) negative Os initial ratio
Os(c): initial Os ratio calculated using reported ages in Table 1.