Durham Research Online

Deposited in DRO:
07 November 2016

Version of attached file:
Published Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:

Publisher’s copyright statement:
© 2008 Tahani A. Maturi and Ezz H. Abdelfattah. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
A New Weighted Rank Correlation

Tahani A. Maturi and Ezz H. Abdelfattah

Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Faculty of Science, Helwan University, Cairo, Egypt

Abstract: Problem Statement: There have been many cases in real life where two independent sources have ranked n objects, with the interest focused on agreement in the top rankings. Spearman's rho and Kendall's tau coefficients assigned equal weights to all rankings. As a result, the literature proposed several weighted correlation coefficients with emphasis on the top rankings, including the top-down, weighted Kendall's Tau and Blest's correlation coefficient. Approach: This article introduced a new weighted rank correlation coefficient that was sensitive to agreement in the top rankings. It presented the limiting distribution under the null hypothesis of independence and provided a summary of quantiles of the exact null distribution for n = 3(1)9. Results: The article summarized the power comparison between the new weighted coefficient and other weighted coefficients, and showed that the new weighted rank correlation coefficient provided the locally most powerful rank test. Conclusions/Recommendations: The new weighted correlation should be used along with other weighted coefficients when the interest focused on agreement in the top rankings, in order to make an effective inference.

Key words: Weighted correlation, top ranking, top-down correlation coefficient, weighted Kendall's Tau, Blest's correlation coefficient.

INTRODUCTION

Every year many students want to apply for postgraduate courses and research, leading to a large number of applicants to universities. Postgraduate committee can choose only few of them, according to some criteria such as GPA and the average of their grades in the major courses that they have studied before. Since the number of the applicants is large, the aim is to minimize the effort and the cost of interviewing all the candidates while choosing the best among them. In such cases, a measure which gives more weight to those who have higher grades is required. Many other cases in life require more weight for values in the top in order to reach decision. For instance, a couple of panels of judges in one of the Olympic game wants to choose the best participants.

For such cases, correlation measures that give more weighted for the top rankings were presented by \cite{1,4,5}. To review these measures briefly, let \((X_i, Y_i), 1 \leq i \leq n\) be an independently and identically distributed (i.i.d.) sample from a bivariate distribution where \(q_i\) is the rank of Y whose corresponding X has rank i among \(\{X_j\}\). Throughout we assume that no ties occur among the variables being considered. If ties occur, the average of weighted score can be used. Iman and Conover\cite{4} introduced the top-down correlation coefficient, \(R_t\), as:

\[
R_t = \left(\sum_{i=1}^{n} S_{t_i} - n \right) / (n - S_t)
\]

Where, \(S_t\) is Savage score\cite{4} defined as:

\[
S_t = \sum_{j=1}^{n} 1/j
\]

Shieh\cite{5} proposed the weighted Kendall's Tau, \(R_k\), which is given by:

\[
R_k = \frac{2}{m(m-1)} \sum_{1 \leq i < j \leq m} \text{sgn}(i-j) \text{sgn}(q_i - q_j)
\]

Where, m is the number of top rankings taken into account and \(\text{sgn}(a) = -1, 0 \text{ or } 1\), if \(a < , = \text{ or } > 0\).

A graphical approach was proposed by\cite{1}, leading to a correlation coefficient \(R_b\), which is given by:

\[
R_b = \frac{2n+1}{n-1} - \frac{12}{n(n+1)} \sum_{i=1}^{n} (n+1-i)^2 q_i
\]
A new weighted rank correlation, R_w, that depends on weighted scores, will be introduced along with its asymptotic distribution under the null hypothesis of independence. Then some exact and approximated quantiles of R_w are summarized. Power comparisons between R_w and other reviewed coefficients will be presented. Finally, an example is given for illustration.

MATERIALS AND METHODS

A new weighted rank correlation: Let $(X_i, Y_i), (i \leq n)$ be an i.i.d. sample from a bivariate distribution and let $(i, q_i), i = 1, 2, \ldots, n$, be paired rankings of n objects, where q_i is the rank of the Y values whose corresponding X has rank i among all $\{X_j\}$. We define weighted scores as:

$$W_i = w^i$$ \hspace{1cm} (4)

Where, i is the rank of the order observations in a sample of size n and $0 < w < 1$.

The new weighted rank coefficient R_w is obtained by computing the ordinary Pearson correlation coefficient, r, on the weighted scores,

$$R_w = \left(\sum_{i=1}^{n} w^{i+q_i} - a_i \right) / \left(na_2 - a_i \right)$$ \hspace{1cm} (5)

Where, $a_i = w^2(1 - w^2) / (1 - w^2)$ and $a_i = w^2(1 - w^2) / (1 - w^2)$.

In another form, we can write R_w as:

$$R_w = \sum_{i=1}^{n} \frac{w^i - \sqrt{a_i}}{\left[a_2 - (a_i / n)^{1/2} \right]} \left(\frac{w^{q_i} - \sqrt{a_i}}{\left[a_2 - (a_i / n)^{1/2} \right]} \right)$$ \hspace{1cm} (6)

The statistic R_w has a maximum value of 1. However, its minimum possible value is only -1 for $n = 2$, similar as the top-down correlation r and for $n \to \infty$ it increases from -1 towards approximately a value in the range from -2E -6 to -3E -4, depending on the value of w.

The asymptotic distribution of R_w: Now, the asymptotic distribution of R_w is derived under H_0, the null hypothesis of independence. The alternative hypothesis of a positive dependence in the rankings can be detected using any of several statistics. The weighted rank correlation R_w is more sensitive to agreement in the top ranks than to agreement in the bottom. For a test of H_0 that is equally sensitive to agreement among ranks at all levels, Spearman's rho or Kendall's tau correlation coefficient can be used. If the marginal distributions are normal and the alternative hypothesis is bivariate normal with positive correlation, the Pearson correlation coefficient, r, provides the most powerful test of H_0 against the alternative. Under H_0, the asymptotic distribution of R_w is given by the following theorem:

Theorem 1: Under the null-hypothesis of independence, $E(R_w) = 0$, $V(R_w) = 1/(n-1)$ and the asymptotic distribution of $(n-1)^{1/2} R_w$ is the standard normal distribution.

Proof: The mean and the variance of the R_w, under H_0, are computed as follows. Since $E(\sum w^{i+q_i}) = nE(w^i)E(w^{q_i}) = (1/ n)w^2(1 - w^2)^2 / (1 - w^2) = a_1 / n$, then by substituting in (5) we directly obtain that $E(R_w) = 0$. For the variance,

$$V(R_w) = \text{var}(R_w) = \frac{n^2 V(\sum w^{i+q_i})}{(na_2 - a_i)^2}$$

Where

$$V(\sum w^{i+q_i}) = nV(\sum w^i)V(\sum w^{q_i}) + n(n-1)\text{cov}(w^i, w^{q_i})\text{cov}(w^j, w^{k_j})$$

with

$$V(w^i) = V(w^j) = (1/ n) a_2 - \frac{a_i}{n}$$

and

$$\text{cov}(w^i, w^j) = \text{cov}(w^k, w^l) = E(w^i w^j) - E(w^i)E(w^j)$$

Therefore

$$V(\sum w^{i+q_i}) = n \left(\frac{1}{n} (a_i - \frac{a_j}{n})^2 \right) + n(n-1) \left(\frac{1}{n(n-1)} \frac{a_i}{n}^2 \right)$$

and

$$\frac{1}{n-1} (a_2 - \frac{a_i}{n})$$
is asymptotically normal with mean 0 and

$$\xi, \eta \sim \mathcal{N}(0, \sigma^2),$$

for

$$N \to \infty,$$

and

$$\eta \sim \mathcal{N}(0, \sigma^2),$$

for

$$N \to \infty.$$

Using

$$a_s(R_m, g) = [a_s(a_i / n)]^{1/2} \left(\frac{w_i - n - 1}{w_i n} \right),$$

and

$$a_s(Q_m, g) = [a_s(a_i / n)]^{1/2} \left(\frac{w_i - n - 1}{w_i n} \right),$$

That is,

$$R_m = \sum_{i=1}^n a_s(R_m, g) a_s(Q_m, g).$$

is written as a linear rank statistic. Under

$$H_0,$$

using Theorem V.1.8 in Hájek and Šidák[3], the distribution of the statistic

$$R_m$$

for

$$n \to \infty$$

is asymptotically normal with mean 0 and variance

$$\sigma^2(R_m) = \left(n - 1 \right)^{-1}.$$

Exact and approximate quantiles of ***Rm***: When the null hypothesis is true, all permutations of ranks \((I, q)\), \(1 \leq i \leq n\), are equally likely where \(w\) can take any value between 0 and 1, exclusive. Then, exact and approximate quantiles of \(R_m\) can be computed for chosen values of \(w\), say 0.3, 0.6 and 0.9. Exact quantiles for \(n = 3(1)9\) are summarized in Table 1 and for large \(n\), approximate quantiles are shown in Table 2.

Power comparison: Let \(X = X' + AZ\) and \(Y = Y' + ZA\), where \(X', Y'\) and \(Z\) are independent random variables and assume that \(X'\) and \(Y'\) have probability density functions \(f(x)\) and \(g(y)\), respectively, while the distribution of \(Z\) is arbitrary. If \(f(x)\) and \(g(y)\) are continuous almost everywhere and satisfy the conditions \(\int_0^\infty f(x) \, dx < \infty\) and \(\int_0^\infty g(y) \, dy < \infty\), then from (6) and Hájek and Šidák[3], Theorem II.4.11, the locally most powerful rank test of \(H_0: \Delta = 0\) versus \(H_1: \Delta > 0\) is the test with rejection region \(R_m \geq c\) for some suitable chosen constant \(c\).

The power comparisons, from a bivariate normal population, between \(R_m\) for chosen values of \(w\) and the top-down, weighted Kendall's tau and Blest's correlation , as given in (1), (2) and (3), respectively, are shown in Table 3. From Table 3, we note that \(R_m\) has better power than other correlation coefficients, especially for \(w = 0.9\) at small sample size (e.g., \(n = 8\)) and at significant level \(\alpha = 0.05\), as shown in Fig. 1.

Table 1: Exact quantiles for the weighted correlation, \(R_m\)

<table>
<thead>
<tr>
<th>(w)</th>
<th>(n)</th>
<th>0.90</th>
<th>0.95</th>
<th>0.975</th>
<th>0.99</th>
<th>0.995</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>10</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>0.9</td>
<td>3</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 2: Approximate quantiles for the weighted correlation, \(R_m\)

<table>
<thead>
<tr>
<th>(w)</th>
<th>(n)</th>
<th>0.90</th>
<th>0.95</th>
<th>0.975</th>
<th>0.99</th>
<th>0.995</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>10</td>
<td>0.8895</td>
<td>0.8991</td>
<td>0.9205</td>
<td>0.9902</td>
<td>0.9911</td>
<td>0.9992</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
<td>0.8895</td>
<td>0.8991</td>
<td>0.9205</td>
<td>0.9902</td>
<td>0.9911</td>
<td>0.9992</td>
</tr>
<tr>
<td>0.9</td>
<td>3</td>
<td>0.8895</td>
<td>0.8991</td>
<td>0.9205</td>
<td>0.9902</td>
<td>0.9911</td>
<td>0.9992</td>
</tr>
</tbody>
</table>

![Fig. 1: Power curves of randomized tests of independence for \(n = 8\)](image-url)
RESULTS AND DISCUSSION

Numerical Example: To illustrate our new weighted rank correlation, we use a data set, in Table 4, that was also used by\(^{(5)}\). The data set considers two techniques, A and B, used to select the most effective variables out of 20 variables for evaluation of some software packages.

We see that the two techniques agree strongly on the top six variables. However, there is large disagreement between these techniques after that. In such circumstances, we may want to place more emphasis on the top rankings rather than equity over all ranking values. Therefore, we calculate some different weighted rank statistics, along with our weighted rank correlation at different weighted values. For each statistic the corresponding p-values are evaluated, these values are given in Table 5.

From Table 5 we can conclude that at different weight values, our weighted rank correlation and the top-down correlation provide strong evidence (p-value <0.001) against the null hypothesis of
CONCLUSION

This article proposed a new weighted rank correlation coefficient that was sensitive to agreement in the top rankings. Under the null hypothesis of independence, the proposed coefficient’s limiting distribution was derived along with the exact and approximated quantiles for different sample sizes. As shown, the test that depended on the new weighted rank correlation coefficient was the locally most powerful rank test. Therefore, when interest focused on the top rankings, we recommended using the new weighted rank correlation coefficient, together with other weighted coefficients, to reach an effective decision.

A generalization of this article, when more than two independent sources rank n objects with focus on top rankings, known as a Concordance measure, will be presented somewhere else.

REFERENCES