Skip to main content

Research Repository

Advanced Search

Hearing the signal of dark sectors with gravitational wave detectors

Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael

Hearing the signal of dark sectors with gravitational wave detectors Thumbnail


Authors

Joerg Jaeckel



Abstract

Motivated by advanced LIGO (aLIGO)’s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.

Citation

Jaeckel, J., Khoze, V. V., & Spannowsky, M. (2016). Hearing the signal of dark sectors with gravitational wave detectors. Physical Review D, 94(10), Article 103519. https://doi.org/10.1103/physrevd.94.103519

Journal Article Type Article
Acceptance Date Oct 25, 2016
Online Publication Date Nov 18, 2016
Publication Date Nov 18, 2016
Deposit Date May 5, 2016
Publicly Available Date Mar 29, 2024
Journal Physical Review D
Print ISSN 2470-0010
Electronic ISSN 2470-0029
Publisher American Physical Society
Peer Reviewed Peer Reviewed
Volume 94
Issue 10
Article Number 103519
DOI https://doi.org/10.1103/physrevd.94.103519
Related Public URLs http://arxiv.org/abs/1602.03901

Files

Accepted Journal Article (1 Mb)
PDF

Copyright Statement
Reprinted with permission from the American Physical Society: Physical Review D 94, 103519 © 2016 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.






You might also like



Downloadable Citations