Durham Research Online

Deposited in DRO:
06 February 2017

Version of attached file:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Further information on publisher’s website:
https://doi.org/10.1016/j.econlet.2017.02.003

Publisher’s copyright statement:
© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
Ranking Equilibrium Competition in Auctions with Participation Costs

Daniel Z. Li*

January 18, 2017

Abstract

This paper studies the degrees of equilibrium competition in three common forms of auctions with costly participation, and shows that, when bidders’ valuation distribution is concave, there is a simple condition to rank the equilibrium competition of those auctions. It also investigates how the results are related to stochastic ordering of bidders’ valuation distributions, and provides some illustrative examples.

Keywords: auctions; participation costs; competition; concave distribution; first order stochastic dominance

JEL Classification: D44; D82

1 Introduction

In auctions with participation costs, the degrees of competition, which is measured by the numbers of participating bidders, are endogenously determined. It is a natural and important question to explore the possible difference in equilibrium competition in those auctions, particularly in comparison to social optimum. In this paper, we study three common forms of auctions with costly participation, and complement the current results in the literature by providing some simple conditions that enable us to clearly rank the degrees of equilibrium competition in those auctions.

The literature on auctions with costly participation can roughly be divided into two categories, depending on who pays the costs. One is search auction, denoted by \(A_s \), where a seller incurs costs to attract bidders to the auction (Crémer, et al 2007; Szech, 2011; Li and Xu, 2016). The other is auctions with costly entry, where bidders need to pay entry costs to participate in the auction, which can be further summarized to two branches: in the first branch, denoted by \(A_u \), bidders make entry decisions before knowing their true valuations of the product (McAfee and McMillan, 1987; Levin and Smith, 1994); and in

*I am grateful to an anonymous referee for the valuable comments and suggestions. I would also like to thank the helpful discussions with Xiaoyong Cao, Xiaogang Che, Diego Moreno and Leslie Reinhorn, as well as the comments from the participants at the Micro-workshop at Durham University. Daniel Z. LI, Department of Economics and Finance, Durham University Business School, Durham University, Mill Hill Lane, Durham DH1 3LB, UK. Email: daniel.li@durham.ac.uk, Tel: +44(0)1913346335
the second, denoted by A_k, bidders make entry decisions only after learning their true valuations (Samuelson, 1985; Tan and Yilankaya, 2006; Cao and Tian, 2010).

In the case of search auction A_s, Szech (2011) shows that when bidders’ valuation distribution is of increasing failure rate (IFR), a seller will invite more than the socially optimal number of bidders to the auction. This over-invitation result is also reported by Li and Xu (2016) in descending auctions, yet under different assumptions. In the auction of A_u, McAfee and McMillan (1987) show in their seminal paper that the equilibrium number of participating bidders is just equal to the socially optimal one.

In this paper, we complement the above results by investigating the degree of equilibrium competition in the auction of A_k. In this case, the number of participating bidders is a random variable, whose expectation is related to the total number of potential bidders in the market. We show that, when bidders’ valuation distribution is concave, the expected number of participating bidders in A_k is strictly increasing in the total number of potential bidders, which enables us to provide a simple condition on ranking the degrees of equilibrium competition between A_k and A_u. Moreover, when bidders’ valuation distribution is uniform, there is a robust ranking result of equilibrium competition across A_s, A_u and A_k, regardless of the magnitude of the participation cost and the total number of potential bidders. Finally, we investigate how the results are related to stochastic ordering of bidders’ valuation distributions, and provide some illustrative examples.

2 the Model

Consider a standard auction without a reserve price, where there are $N \in [1, \infty)$ potential bidders in the market who may participate. Participation in the auction is costly, and that cost can be paid either by the seller, such as in A_s, or by the bidders, such as in A_u and A_k. We assume there is a unit participation cost of $c \in (0, 1)$ for each bidder. The bidders are ex ante homogeneous, whose valuation V conforms to the distribution of F on $[0, 1]$ with density $f > 0$.

When there are $n \leq N$ participating bidders, indexed by $i = 1, 2, ..., n$, let $\{V_i\}_{i=1}^n$ be n independent draws from F, where V_i is bidder i’s valuation. The distribution of F is common knowledge, while v_i, the realization of V_i, is privately observed only by bidder i. We denote $V_{k:n}$ the kth highest valuation of the n bidders’ such that

$$V_{1:n} \geq V_{2:n} \geq \cdots \geq V_{n:n}.$$

For the order statistics of $V_{k:n}$, let $F_{k:n}$ and $f_{k:n}$ be its cumulative distribution function and probability density function respectively.

We denote n^{**} as the socially optimal number of participating bidders, which maximizes the expected social welfare. Therefore,

$$n^{**} \in \arg \max_n E[V_{1:n}] - nc,$$

where $E[V_{1:n}]$ is the expected value of $V_{1:n}$, and n^{**} satisfies

$$E[V_{1:n^{**}} - V_{1:n^{**} - 1}] \geq c > E[V_{1:n^{**} + 1} - V_{1:n^{**}}]. \quad (1)$$
The existence of n^{**} is guaranteed by the observation that $E[V_{1:n}]$ is increasing and concave in n, with $\lim_{n \to \infty} E[V_{1:n+1} - V_{1:n}] = 0$.

3 Ranking Equilibrium Competition

We next consider the degrees of equilibrium competition in the three auctions of A_s, A_u and A_k, where the seller is a revenue-maximizer, yet not imposing a reserve price.

3.1 Search auction A_s

In a search auction A_s, the problem for a revenue-maximizing seller is to

$$\max_n E[V_{2:n}] - nc.$$ (2)

It is known that when F is of IFR, (2) is a well-defined convex problem. Its solution, denoted by n^*_s, is given by

$$E[V_{2:n^*_s} - V_{2:n^*_s-1}] \geq c > E[V_{2:n^*_s+1} - V_{2:n^*_s}].$$

Lemma 1 (Scezh, 2011) If F is of IFR, then in auction A_s, a revenue maximizing seller invites more than the socially optimal number of bidders to the auction, that is,

$$n^*_s \geq n^{**}.$$

The intuition is that, bidders’ winning rent is decreasing in n, and inviting an extra bidder will then reduce the expected total surplus of the bidders, which is ignored by the seller but is taken into account when computing the expected social welfare.

3.2 Auction with entry cost I: A_u

There are two stages in the auction of A_u: in the second stage, it is a standard auction among the participating bidders; in the first stage, knowing what will follow, each bidder decides whether or not to incur c and enter the auction. In the auction of A_u, the bidders make entry decisions before learning their true valuations.

When there are n participating bidders, the expected profit for a bidder is

$$E\pi (n) = \frac{1}{n} E[V_{1:n} - V_{2:n}] - c = E[V_{1:n} - V_{1:n-1}] - c.$$ (3)

The equilibrium number of participating bidders, denoted by n^*_u, is therefore given by

$$E[V_{1:n^*_u} - V_{1:n^*_u-1}] \geq c > E[V_{1:n^*_u+1} - V_{1:n^*_u}],$$

which is the same as (1). We then have the following result.

Lemma 2 (McAfee and McMillan, 1987) In auction A_u where bidders make entry decisions before learning their valuations, equilibrium entry is efficient, that is,

$$n^*_u = n^{**}.$$
This happens because the bidders make entry decisions before knowing their valuations, and therefore the \textit{ex ante} information rent is zero for the bidders. As the expected social welfare is equal to the sum of the expected auction revenue and the expected payoff of the participating bidders, which is equal to zero, then revenue maximization for the seller is equivalent to welfare maximization.

3.3 Auction with entry cost II: A_k

The setup of the auction of A_k is the same as that of A_u, except that now the bidders make entry decisions after learning their true valuations. It is well known that there exists a unique symmetric equilibrium with cutoff valuation \hat{v} such that

$$\hat{v} \cdot F_{1:N-1}(\hat{v}) - c = 0,$$

where N is the total number of potential bidders. Moreover, when F is concave, there does not exist asymmetric equilibrium (Tan and Yilankaya, 2006). From (4), the expected number of participating bidders, denoted by $n_k^*(N)$, is

$$n_k^*(N) = N \left[1 - F(\hat{v}(N)) \right],$$

from the property of binomial distribution.

Lemma 3 $\hat{v}(N)$ is increasing in N, and $\lim_{N \to \infty} \hat{v}(N) = 1$.

Proof. Suppose N can take real value, and by simple differentiation,

$$\frac{\partial \hat{v}}{\partial N} = - \frac{\ln F(\hat{v})}{\frac{1}{\hat{v}} + (N-1) \frac{f(\hat{v})}{F(\hat{v})}} > 0. \quad (6)$$

Second, from monotone convergence theorem, we know that the sequence of $\hat{v}(N)$ converges to its supreme, denoted by \check{v}. If $\check{v} < 1$, then $\lim_{N \to \infty} \hat{v}(N) F_{1:N-1}(\hat{v}(N)) = 0 < c$, which results in a contradiction. ■

We are more interested in the properties of $n_k^*(N)$, and have the following result.

Lemma 4 If $F(x)$ is concave, then $n_k^*(N)$ is increasing in N, and $\bar{n}_k^* = \lim_{N \to \infty} n_k^*(N) = - \ln c$.

Proof. If $F(x)$ is concave, then $f(x) \leq F(x)/x$. From (5) and (6), we have

$$\frac{\partial n_k^*}{\partial N} = \left[1 - F(\hat{v}) \right] + N f(\hat{v}) \frac{\ln F(\hat{v})}{\frac{1}{\hat{v}} + (N-1) \frac{f(\hat{v})}{F(\hat{v})}} \geq \left[1 - F(\hat{v}) \right] + N f(\hat{v}) \frac{\ln F(\hat{v})}{\frac{f(\hat{v})}{F(\hat{v})} + (N-1) \frac{f(\hat{v})}{F(\hat{v})}} \geq \left[1 - F(\hat{v}) \right] + F(\hat{v}) \ln F(\hat{v}) \geq 0.$$

Second, applying l’Hôpital’s rule,

$$\lim_{N \to \infty} n_k^*(N) = \lim_{N \to \infty} \left(\frac{c}{\hat{v}(N)} \right)^{N-1} \left\{ - \frac{N^2 \ln c - \ln \hat{v}(N)}{(N-1)^2} + \frac{N^2}{(N-1)} \frac{\ln F(\hat{v})}{1 + (N-1) \frac{f(\hat{v})}{F(\hat{v})}} \right\} = - \ln c.$$
because
\[\lim_{N \to \infty} \hat{v}(N) = 1; \quad \lim_{N \to \infty} \left(\frac{c}{\hat{v}(N)} \right)^{\frac{1}{N-1}} = 1; \quad \lim_{N \to \infty} \frac{N}{(N-1) \left(1 + (N-1) \frac{f(v)}{F(v)} \right)} = 0. \]

Lemma 4 then enables us to provide a simple condition on the comparison between \(n^*_k(N) \) and \(n^*_u \), as follows.

Proposition 5 When \(F(v) \) is concave,

- If \(\bar{n}^*_k \leq n^*_u \), then for any given finite \(N \), \(n^*_k(N) < n^*_u \);
- If \(\bar{n}^*_k > n^*_u \), then there exists a finite \(N_0 \) such that, \(n^*_k(N) < n^*_u \) iff \(N < N_0 \).

Moreover, when \(V \) conforms to uniform distribution, there is a robust ranking result on equilibrium competition across the auctions of \(A_s \), \(A_u \) and \(A_k \).

Lemma 6 If \(V \sim U[0,1] \), then for any \(c \in (0,1) \) and any finite \(N \in [1, \infty) \),

\[n^*_k(N) < n^*_u = n^{**} \leq n^*_s. \]

Proof. As \(V \sim U[0,1] \), then \(F \) is both concave and of IFR. From Lemma 4, \(n^*_k(N) \) is increasing in \(N \), and \(\lim_{N \to \infty} n^*_k(N) = \bar{n}^*_k = -\ln c \). When \(V \sim U[0,1] \), the condition for \(n^*_u \) is

\[n^*_u (n^*_u + 1) \leq c^{-1} < (n^*_u + 1) (n^*_u + 2). \]

When \(n = \bar{n}^*_k \), we have \(\bar{n}^*_k (\bar{n}^*_k + 1) = -\ln c (1 - \ln c) < c^{-1} \), and therefore \(n^*_u \geq \bar{n}^*_k > n^*_k(N) \) for any finite \(N \). The parts of \(n^*_u = n^{**} \leq n^*_s \) is already proved as above in Lemma 1.

The above ranking results on equilibrium competition provide interesting implications on public regulations. For example, in auction \(A_k \), if there is insufficient entry in the auction, according to Proposition 5, then a regulator may encourage competition by subsidizing bidders’ entry costs, which may induce more efficient allocations in equilibrium. Similar argument also applies for the case of excessive competition, such as in auction \(A_s \).

3.4 Further discussion

We next investigate how \(n^*_k(N) \) is related to the stochastic ordering of bidders’ valuation distributions. Suppose bidders’ valuations are now independent draws from the distribution of \(G \) on \([0,1]\), with \(G \succ F_{OSD} F \) in terms of first order stochastic dominance (FOSD). If we denote the expected number of participating bidders under \(G \) by \(\bar{n}^*_k(N) \), we then have the following result.

Lemma 7 If \(G \succ F_{OSD} F \), then \(\bar{n}^*_k(N) \geq n^*_k(N) \).
Proof. If $G \succ_{FOSD} F$, then $G_{1:N} \succ_{FOSD} F_{1:N}$. From (4), we have $\tilde{v} \cdot F_{1:N-1} (\tilde{v}) = c = \tilde{v} \cdot G_{1:N-1} (\tilde{v})$, where \tilde{v} is the new cutoff valuation under G, which implies $\tilde{v} \leq \tilde{v}$ and $F (\tilde{v}) \geq G (\tilde{v})$. The result then follows from (5).

Finally, let us consider a family of concave distributions in the form of $F_{\alpha} (v) = v^\alpha$, indexed by $\alpha \leq 1$ and ordered in FOSD. We are interested in how the ranking of equilibrium competition between A_u and A_k is related to α. First, in the auction of A_k, from (4) and (5), the expected number of participating bidders is

$$n^*_k (N, \alpha) = N \left[1 - \frac{\alpha}{\alpha (n - 1) + 1} \right],$$

which is increasing in α, with its limit $\bar{n}^*_k = \lim_{N \to \infty} n^*_k (N, \alpha) = -\ln c$. Second, in the auction of A_u, from (3), we have

$$E\pi (n; \alpha) = \frac{\alpha}{\alpha (n - 1) + 1} \left[\alpha (n) + 1\right] - c,$$

and the equilibrium number of bidders, $n^*_u (\alpha)$, is given by $E\pi (n^*_u; \alpha) \geq 0 > E\pi (n^*_u + 1; \alpha)$. If $E\pi (\bar{n}^*_k; \alpha) \geq 0$, then $n^*_u (\alpha) \geq n^*_k > n^*_k (N, \alpha)$ for any finite N (Proposition 5).

Figure 1 below provides an illustration of the ranking result in the (c, α) space. In the diagram, the blue curve plots the set of all points (c, α) such that $E\pi (\bar{n}^*_k; \alpha) = 0$, which define an implicit function of $\alpha = \eta (c)$. In Figure 1, for each c,

- If $\alpha \geq \eta (c)$, then $E\pi (\bar{n}^*_k; \alpha) \geq 0$, and therefore $n^*_k (N, \alpha) < n^*_u (\alpha)$ for any finite N;
- If $\alpha < \eta (c)$, then $E\pi (\bar{n}^*_k; \alpha) < 0$, then there exists a finite N_c such that $n^*_k (N, \alpha) < n^*_u (\alpha)$ iff $N < N_c$.

![Figure 1: $n^*_k (N, \alpha)$ vs. $n^*_u (\alpha)$](image)

References

