Skip to main content

Research Repository

Advanced Search

Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations

Bose, S.; Hellwing, W.A.; Frenk, C.S.; Jenkins, A.; Lovell, M.R.; Helly, J.C.; Li, B.; Gonzalez-Perez, V.; Gao, L.

Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations Thumbnail


Authors

S. Bose

W.A. Hellwing

M.R. Lovell

J.C. Helly

V. Gonzalez-Perez

L. Gao



Abstract

We use the Copernicus Complexio (coco) high-resolution N-body simulations to investigate differences in the properties of small-scale structures in the standard cold dark matter (CDM) model and in a model with a cutoff in the initial power spectrum of density fluctuations consistent with both a thermally produced warm dark matter (WDM) particle with a rest mass of 3.3 keV and a sterile neutrino with mass 7 keV and leptogenesis parameter L6 = 8.7. The latter corresponds to the ‘coldest’ model with this sterile neutrino mass compatible with the identification of the recently detected 3.5 keV X-ray line as resulting from particle decay. CDM and WDM predict very different number densities of subhaloes with mass ≲ 109 h−1 M⊙ although they predict similar, nearly universal, normalized subhalo radial density distributions. Haloes and subhaloes in both models have cuspy Navarro-Frenk-White profiles, but WDM subhaloes below the cut-off scale in the power spectrum (corresponding to maximum circular velocities Vmaxz = 0 ≤ 50 kms− 1) are less concentrated than their CDM counterparts. We make predictions for observable properties using the galform semi-analytic model of Galaxy formation. Both models predict Milky Way satellite luminosity functions consistent with observations, although the WDM model predicts fewer very faint satellites. This model, however, predicts slightly more UV bright galaxies at redshift z > 7 than CDM, but both are consistent with observations. Gravitational lensing offers the best prospect of distinguishing between the models.

Citation

Bose, S., Hellwing, W., Frenk, C., Jenkins, A., Lovell, M., Helly, J., …Gao, L. (2017). Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations. Monthly Notices of the Royal Astronomical Society, 464(4), 4520-4533. https://doi.org/10.1093/mnras/stw2686

Journal Article Type Article
Acceptance Date Oct 17, 2016
Online Publication Date Oct 19, 2016
Publication Date Feb 1, 2017
Deposit Date Feb 27, 2017
Publicly Available Date Mar 28, 2024
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 464
Issue 4
Pages 4520-4533
DOI https://doi.org/10.1093/mnras/stw2686

Files

Published Journal Article (3.5 Mb)
PDF

Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.





You might also like



Downloadable Citations