Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets.

Wyper, P. and Pontin, D. (2014) 'Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets.', Physics of plasmas., 21 (10). p. 102102.

Abstract

In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.

Item Type:Article
Full text:(VoR) Version of Record
First Live Deposit - 29 March 2017
Download PDF
(11925Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1063/1.4896060
Publisher statement:© 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Wyper, P. & Pontin, D. (2014). Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets. Physics of Plasmas 21(10): 102102 and may be found at https://doi.org/10.1063/1.4896060
Record Created:29 Mar 2017 14:58
Last Modified:29 Mar 2017 16:34

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library