We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia.

Milne, G. A. and Davis, J. L. and Mitrovica, J. X. and Scherneck, H.-G. and Johansson, J. M. and Vermeer, M. and Koivula, H. (2001) 'Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia.', Science., 291 (5512). pp. 2381-2385.


Analysis of Global Positioning System (GPS) data demonstrates that ongoing three-dimensional crustal deformation in Fennoscandia is dominated by glacial isostatic adjustment. Our comparison of these GPS observations with numerical predictions yields an Earth model that satisfies independent geologic constraints and bounds both the average viscosity in the upper mantle (5 × 1020 to 1 × 1021 pascal seconds) and the elastic thickness of the lithosphere (90 to 170 kilometers). We combined GPS-derived radial motions with Fennoscandian tide gauge records to estimate a regional sea surface rise of 2.1 ± 0.3 mm/year. Furthermore, ongoing horizontal tectonic motions greater than ~1 mm/year are ruled out on the basis of the GPS-derived three-dimensional crustal velocity field.

Item Type:Article
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:26 Feb 2007
Last Modified:11 Dec 2017 11:26

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library