We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

A meshless local Petrov-Galerkin scaled boundary method.

Deeks, A. J. and Augarde, C. E. (2005) 'A meshless local Petrov-Galerkin scaled boundary method.', Computational mechanics., 36 (3). pp. 159-170.


The scaled boundary finite-element method is a new semi-analytical approach to computational mechanics developed by Wolf and Song. The method weakens the governing differential equations by introducing shape functions along the circumferential coordinate direction(s). The weakened set of ordinary differential equations is then solved analytically in the radial direction. The resulting approximation satisfies the governing differential equations very closely in the radial direction, and in a finite-element sense in the circumferential direction. This paper develops a meshless method for determining the shape functions in the circumferential direction based on the local Petrov-Galerkin approach. Increased smoothness and continuity of the shape functions is obtained, and the solution is shown to converge significantly faster than conventional scaled boundary finite elements when a comparable number of degrees of freedom are used. No stress recovery process is necessary, as sufficiently accurate stresses are obtained directly from the derivatives of the displacement field.

Item Type:Article
Additional Information:The original publication is available at
Keywords:Meshless methods, Scaled boundary finite-element method, Computational mechanics,
Full text:Full text not available from this repository.
Publisher Web site:
Record Created:23 Apr 2008
Last Modified:08 Apr 2009 16:20

Social bookmarking: del.icio.usConnoteaBibSonomyCiteULikeFacebookTwitterExport: EndNote, Zotero | BibTex
Look up in GoogleScholar | Find in a UK Library